
1

A Transition-Based Directed Acyclic Graph Parser
for Universal Conceptual Cognitive Annotation

Daniel Hershcovich, Omri Abend and Ari Rappoport

University of Washington
July 26, 2017

2

TUPA — Transition-based UCCA Parser
The first parser to support the combination of three properties:

1. Non-terminal nodes — entities and events over the text

2. Reentrancy — allow argument sharing
3. Discontinuity – conceptual units are split

— needed for many semantic schemes (e.g. AMR, UCCA).

You want

to

take a long bath

3

TUPA — Transition-based UCCA Parser
The first parser to support the combination of three properties:

1. Non-terminal nodes — entities and events over the text
2. Reentrancy — allow argument sharing

3. Discontinuity – conceptual units are split
— needed for many semantic schemes (e.g. AMR, UCCA).

You want

to

take a long bath

4

TUPA — Transition-based UCCA Parser
The first parser to support the combination of three properties:

1. Non-terminal nodes — entities and events over the text
2. Reentrancy — allow argument sharing
3. Discontinuity – conceptual units are split

— needed for many semantic schemes (e.g. AMR, UCCA).

You want

to

take a long bath

5

Introduction

6

Linguistic Structure Annotation Schemes

• Syntactic dependencies (Nivre, 2005)

• Semantic dependencies (Oepen et al., 2016)

• AMR (Banarescu et al., 2013)

• UCCA (Abend and Rappoport, 2013)

• Other semantic representation schemes1

Abstract away from syntactic detail that does not affect meaning:

. . . bathed = . . . took a bath

1See recent survey (Abend and Rappoport, 2017)

7

Syntactic Dependencies

• Bilexical tree: syntactic structure representation.
• Fast and accurate parsers (e.g. transition-based).

You want to take a long bath

root

nsubj

xcomp

mark

dobj

det

amod

Non-projectivity (discontinuity) is a challenge (Nivre, 2009).

A hearing is scheduled on the issue today

root

det

nsubj:pass

aux:pass

case

det

nmod

nmod:tmod

8

Semantic Dependencies

• Bilexical graph: predicate-argument representation.
• Derived from theories of syntax-semantics interface.

You want to take a long bath

top
ARG2

ARG1

ARG1
ARG2

BV

ARG1

DELPH-IN MRS-derived bi-lexical dependencies (DM).

After graduation , Joe moved to Paris

top
TWHEN

ACT-arg

DIR3-arg

Prague Dependency Treebank tectogrammatical layer (PSD).

9

The UCCA Semantic Representation Scheme

10

Universal Conceptual Cognitive Annotation (UCCA)

After

L

graduation

P

H

,

U

Joe

A

moved

P

to

R

Paris

C

A

H

A

—– primary edge

- - - remote edge

After graduation, Joe moved to Paris
P process S state A participant
L linker H linked scene C center
E elaborator D adverbial R relator
N connector U punctuation F function
G ground

11

The UCCA Semantic Representation Scheme

• Cross-linguistically applicable (Abend and Rappoport, 2013).
• Stable in translation (Sulem et al., 2015).
• Fast and intuitive to annotate (Abend et al., 2017).
• Facilitates MT human evaluation (Birch et al., 2016).

English

Hebrew

12

Graph Structure
UCCA generates a directed acyclic graph (DAG): no parser yet.
Text tokens are terminals, complex units are non-terminal nodes.
Remote edges enable reentrancy for argument sharing.
Phrases may be discontinuous (e.g., multi-word expressions).

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

—– primary edge

- - - remote edge

You want to take a long bath

P process
A participant
C center
D adverbial
F function

13

Transition-based UCCA Parsing

14

Transition-Based Parsing
First used for dependency parsing (Nivre, 2004).
Parse text w1 . . . wn to graph G incrementally by applying
transitions to the parser state: stack, buffer and constructed graph.

Initial state:

stack buffer

You want to take a long bath

TUPA transitions:
{Shift, Reduce, NodeX , Left-EdgeX , Right-EdgeX ,

Left-RemoteX , Right-RemoteX , Swap, Finish}

Support non-terminal nodes, reentrancy and discontinuity.

15

Transition-Based Parsing
First used for dependency parsing (Nivre, 2004).
Parse text w1 . . . wn to graph G incrementally by applying
transitions to the parser state: stack, buffer and constructed graph.

Initial state:

stack buffer

You want to take a long bath

TUPA transitions:
{Shift, Reduce, NodeX , Left-EdgeX , Right-EdgeX ,

Left-RemoteX , Right-RemoteX , Swap, Finish}

Support non-terminal nodes, reentrancy and discontinuity.

16

Transition-Based Parsing
First used for dependency parsing (Nivre, 2004).
Parse text w1 . . . wn to graph G incrementally by applying
transitions to the parser state: stack, buffer and constructed graph.

Initial state:

stack buffer

You want to take a long bath

TUPA transitions:
{Shift, Reduce, NodeX , Left-EdgeX , Right-EdgeX ,

Left-RemoteX , Right-RemoteX , Swap, Finish}

Support non-terminal nodes, reentrancy and discontinuity.

17

Example
⇒ Shift

stack

You

buffer

want to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

18

Example
⇒ Right-EdgeA

stack

You

buffer

want to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

19

Example
⇒ Shift

stack

You want

buffer

to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

20

Example
⇒ Swap

stack

want

buffer

You to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

21

Example
⇒ Right-EdgeP

stack

want

buffer

You to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

22

Example
⇒ Reduce

stack buffer

to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

23

Example
⇒ Shift

stack

You

buffer

to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

24

Example
⇒ Shift

stack

You to

buffer

take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

25

Example
⇒ NodeF

stack

You to

buffer

take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

26

Example
⇒ Reduce

stack

You

buffer

take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

27

Example
⇒ Shift

stack

You

buffer

take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

28

Example
⇒ Shift

stack

You take

buffer

a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

29

Example
⇒ NodeC

stack

You take

buffer

a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

30

Example
⇒ Reduce

stack

You

buffer

a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

31

Example
⇒ Shift

stack

You

buffer

a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

32

Example
⇒ Right-EdgeP

stack

You

buffer

a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

33

Example
⇒ Shift

stack

You a

buffer

long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

34

Example
⇒ Right-EdgeF

stack

You a

buffer

long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

35

Example
⇒ Reduce

stack

You

buffer

long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

36

Example
⇒ Shift

stack

You long

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

37

Example
⇒ Swap

stack

You long

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

38

Example
⇒ Right-EdgeD

stack

You long

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

39

Example
⇒ Reduce

stack

You

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

40

Example
⇒ Swap

stack buffer

You bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

41

Example
⇒ Right-EdgeA

stack buffer

You bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

42

Example
⇒ Reduce

stack buffer

You bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

43

Example
⇒ Reduce

stack buffer

You bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

44

Example
⇒ Shift

stack

You

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

45

Example
⇒ Shift

stack

You

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

46

Example
⇒ Left-RemoteA

stack

You

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

47

Example
⇒ Shift

stack

You bath

buffer

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

48

Example
⇒ Right-EdgeC

stack

You bath

buffer

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

49

Example
⇒ Finish

stack

You bath

buffer

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

50

Training
An oracle provides the transition sequence given the correct graph:

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

⇓

Shift, Right-EdgeA, Shift, Swap, Right-EdgeP , Reduce, Shift,
Shift, NodeF , Reduce, Shift, Shift, NodeC , Reduce, Shift,
Right-EdgeP , Shift, Right-EdgeF , Reduce, Shift, Swap,
Right-EdgeD , Reduce, Swap, Right-EdgeA, Reduce, Reduce, Shift,
Shift, Left-RemoteA, Shift, Right-EdgeC , Finish

51

TUPA Model
Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features.
MLP Embeddings + feedforward NN classifier.
BiLSTM Embeddings + deep bidirectional LSTM + MLP

(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

Features: words, POS, syntactic dependencies, existing edge labels
from the stack and buffer + parents, children, grandchildren;
ordinal features (height, number of parents and children)

stack buffer

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

52

TUPA Model
Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features.
MLP Embeddings + feedforward NN classifier.
BiLSTM Embeddings + deep bidirectional LSTM + MLP

(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

53

TUPA Model
Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features.
MLP Embeddings + feedforward NN classifier.
BiLSTM Embeddings + deep bidirectional LSTM + MLP

(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

54

TUPA Model
Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features.
MLP Embeddings + feedforward NN classifier.
BiLSTM Embeddings + deep bidirectional LSTM + MLP

(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

55

TUPA Model
Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features.
MLP Embeddings + feedforward NN classifier.
BiLSTM Embeddings + deep bidirectional LSTM + MLP

(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

56

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

57

Experiments

58

Experimental Setup

• UCCA Wikipedia corpus (
train
4268 +

dev
454 +

test
503 sentences).

• Out-of-domain: English part of English-French parallel corpus,
Twenty Thousand Leagues Under the Sea (506 sentences).

59

Baselines
No existing UCCA parsers ⇒ conversion-based approximation.
Bilexical DAG parsers (allow reentrancy):

• DAGParser (Ribeyre et al., 2014): transition-based.
• TurboParser (Almeida and Martins, 2015): graph-based.

Tree parsers (all transition-based):
• MaltParser (Nivre et al., 2007): bilexical tree parser.
• Stack LSTM Parser (Dyer et al., 2015): bilexical tree parser.
• uparse (Maier, 2015): allows non-terminals, discontinuity.

You want to take a long bath

A

A

A

F F

D

C

UCCA bilexical DAG approximation (for tree, delete remote edges).

60

Bilexical Graph Approximation

1. Convert UCCA to bilexical dependencies.
2. Train bilexical parsers and apply to test sentences.
3. Reconstruct UCCA graphs and compare with gold standard.

After

L

graduation

P

H

,
U

Joe

A

moved

P

to

R

Paris

C

A

H

A

After graduation , Joe moved to Paris

L U

A

A

H

R

A

61

Evaluation
Comparing graphs over the same sequence of tokens,

• Match edges by their terminal yield and label.
• Calculate labeled precision, recall and F1 scores.
• Separate primary and remote edges.

gold

After

L

graduation

P

H
,

U

Joe

A

moved

P

to

R

Paris

C

A

H

A

predicted

After

L

graduation

S

H
,

U

Joe

A

moved

P

to

F

Paris

A

H

A

A

Primary: LP LR LF
6
9 = 67% 6

10 = 60% 64% Remote: LP LR LF
1
2 = 50% 1

1 = 100% 67%

62

Results
TUPABiLSTM obtains the highest F-scores in all metrics:

Primary edges Remote edges
LP LR LF LP LR LF

TUPASparse 64.5 63.7 64.1 19.8 13.4 16
TUPAMLP 65.2 64.6 64.9 23.7 13.2 16.9
TUPABiLSTM 74.4 72.7 73.5 47.4 51.6 49.4
Bilexical DAG (91) (58.3)
DAGParser 61.8 55.8 58.6 9.5 0.5 1
TurboParser 57.7 46 51.2 77.8 1.8 3.7
Bilexical tree (91) –
MaltParser 62.8 57.7 60.2 – – –
Stack LSTM 73.2 66.9 69.9 – – –
Tree (100) –
uparse 60.9 61.2 61.1 – – –

Results on the Wiki test set.

63

Results
Comparable on out-of-domain test set:

Primary edges Remote edges
LP LR LF LP LR LF

TUPASparse 59.6 59.9 59.8 22.2 7.7 11.5
TUPAMLP 62.3 62.6 62.5 20.9 6.3 9.7
TUPABiLSTM 68.7 68.5 68.6 38.6 18.8 25.3
Bilexical DAG (91.3) (43.4)
DAGParser 56.4 50.6 53.4 – 0 0
TurboParser 50.3 37.7 43.1 100 0.4 0.8
Bilexical tree (91.3) –
MaltParser 57.8 53 55.3 – – –
Stack LSTM 66.1 61.1 63.5 – – –
Tree (100) –
uparse 52.7 52.8 52.8 – – –

Results on the 20K Leagues out-of-domain set.

64

Discussion

65

Fine-Grained Analysis
Evaluation of TUPABiLSTM per edge type:

66

Online Demo
http://bit.ly/tupademo

http://bit.ly/tupademo

67

Error Analysis
Copular clauses tend to be parsed as identity.

But, from the guidelines2:

JohnA
[
isF

[
[sixE yearsC]E oldC

]
C

]
S

2http://www.cs.huji.ac.il/˜oabend/ucca/guidelines.pdf

http://www.cs.huji.ac.il/~oabend/ucca/guidelines.pdf

68

Future Work

69

Future Work: UCCA
Already annotated in UCCA, but not yet handled by TUPA:

• Linkage: inter-scene relations (see example).
• Implicit units: units not mentioned at all in the text.
• Inter-sentence relations: discourse structure.

LR link relation
LA link argument

After

L

graduation

P

H

,
U

Joe

A

moved

P

to

R

Paris

C

A

H

A

LR

LA

LA

UCCA graph with a Linkage relation.

70

Future Work: AMR
Similar in structure and content, but poses several challenges:

• Node labels: not just edges, not also nodes are labeled.
• Partial alignment: orphan tokens, implicit concepts.

move-01

after

After graduate-01

graduation

op1

time

person

,

name

”Joe”

Joe

op1

nam
e

A
RG

0

city

moved to

name

”Paris”

Paris

op1

nam
e

ARG2

ARG0

AMR graph in UCCA format.

71

Future Work: SDP
Similar structure, but without non-terminal nodes.
By applying bilexical conversion in reverse, TUPA can be used.

After graduation

A
RG

2

, Joe

AR
G1

moved

top

to Paris

ARG2

ARG1 ARG1

Semantic dependency graph (DM) in UCCA format.

72

Conclusion

• UCCA’s semantic distinctions require a graph structure
including non-terminals, reentrancy and discontinuity.

• TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

• Outperforms strong conversion-based baselines.

Future Work:
• More languages (German corpus construction is underway).
• Broad coverage UCCA parsing.
• Parsing other schemes, such as AMR.
• Text simplification, MT evaluation and other applications.

Code: https://github.com/danielhers/tupa
Demo: http://bit.ly/tupademo
Corpora: http://www.cs.huji.ac.il/˜oabend/ucca.html

Thank you!

https://github.com/danielhers/tupa
http://bit.ly/tupademo
http://www.cs.huji.ac.il/~oabend/ucca.html

73

Conclusion

• UCCA’s semantic distinctions require a graph structure
including non-terminals, reentrancy and discontinuity.

• TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

• Outperforms strong conversion-based baselines.
Future Work:

• More languages (German corpus construction is underway).
• Broad coverage UCCA parsing.
• Parsing other schemes, such as AMR.
• Text simplification, MT evaluation and other applications.

Code: https://github.com/danielhers/tupa
Demo: http://bit.ly/tupademo
Corpora: http://www.cs.huji.ac.il/˜oabend/ucca.html

Thank you!

https://github.com/danielhers/tupa
http://bit.ly/tupademo
http://www.cs.huji.ac.il/~oabend/ucca.html

74

Conclusion

• UCCA’s semantic distinctions require a graph structure
including non-terminals, reentrancy and discontinuity.

• TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

• Outperforms strong conversion-based baselines.
Future Work:

• More languages (German corpus construction is underway).
• Broad coverage UCCA parsing.
• Parsing other schemes, such as AMR.
• Text simplification, MT evaluation and other applications.

Code: https://github.com/danielhers/tupa
Demo: http://bit.ly/tupademo
Corpora: http://www.cs.huji.ac.il/˜oabend/ucca.html

Thank you!

https://github.com/danielhers/tupa
http://bit.ly/tupademo
http://www.cs.huji.ac.il/~oabend/ucca.html

75

References I
Abend, O. and Rappoport, A. (2013).

Universal Conceptual Cognitive Annotation (UCCA).
In Proc. of ACL, pages 228–238.

Abend, O. and Rappoport, A. (2017).
The state of the art in semantic representation.
In Proc. of ACL.
to appear.

Abend, O., Yerushalmi, S., and Rappoport, A. (2017).
UCCAApp: Web-application for syntactic and semantic phrase-based annotation.
In Proc. of ACL: System Demonstration Papers.
to appear.

Almeida, M. S. C. and Martins, A. F. T. (2015).
Lisbon: Evaluating TurboSemanticParser on multiple languages and out-of-domain data.
In Proc. of SemEval, pages 970–973.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Palmer, M., and
Schneider, N. (2013).
Abstract Meaning Representation for sembanking.
In Proc. of the Linguistic Annotation Workshop.

Birch, A., Abend, O., Bojar, O., and Haddow, B. (2016).
HUME: Human UCCA-based evaluation of machine translation.
In Proc. of EMNLP, pages 1264–1274.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015).
Transition-based dependeny parsing with stack long short-term memory.
In Proc. of ACL, pages 334–343.

76

References II
Kiperwasser, E. and Goldberg, Y. (2016).

Simple and accurate dependency parsing using bidirectional LSTM feature representations.
TACL, 4:313–327.

Maier, W. (2015).
Discontinuous incremental shift-reduce parsing.
In Proc. of ACL, pages 1202–1212.

Nivre, J. (2004).
Incrementality in deterministic dependency parsing.
In Keller, F., Clark, S., Crocker, M., and Steedman, M., editors, Proceedings of the ACL Workshop
Incremental Parsing: Bringing Engineering and Cognition Together, pages 50–57, Barcelona, Spain.
Association for Computational Linguistics.

Nivre, J. (2005).
Dependency grammar and dependency parsing.
Technical Report MSI 05133, Växjö University, School of Mathematics and Systems Engineering.

Nivre, J. (2009).
Non-projective dependency parsing in expected linear time.
In Proc. of ACL, pages 351–359.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., and Marsi, E. (2007).
MaltParser: A language-independent system for data-driven dependency parsing.
Natural Language Engineering, 13(02):95–135.

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D., Cinková, S., Flickinger, D., Hajic, J., Ivanova, A., and Uresová,
Z. (2016).
Towards comparability of linguistic graph banks for semantic parsing.
In LREC.

77

References III
Ribeyre, C., Villemonte de la Clergerie, E., and Seddah, D. (2014).

Alpage: Transition-based semantic graph parsing with syntactic features.
In Proc. of SemEval, pages 97–103.

Sulem, E., Abend, O., and Rappoport, A. (2015).
Conceptual annotations preserve structure across translations: A French-English case study.
In Proc. of S2MT, pages 11–22.

78

Backup

79

UCCA Corpora
Wiki 20K

Train Dev Test Leagues
passages 300 34 33 154
sentences 4268 454 503 506
nodes 298,993 33,704 35,718 29,315
% terminal 42.96 43.54 42.87 42.09
% non-term. 58.33 57.60 58.35 60.01
% discont. 0.54 0.53 0.44 0.81
% reentrant 2.38 1.88 2.15 2.03
edges 287,914 32,460 34,336 27,749
% primary 98.25 98.75 98.74 97.73
% remote 1.75 1.25 1.26 2.27
Average per non-terminal node
children 1.67 1.68 1.66 1.61

Corpus statistics.

80

Evaluation
Mutual edges between predicted graph Gp = (Vp, Ep, `p) and gold
graph Gg = (Vg , Eg , `g), both over terminals W = {w1, . . . , wn}:

M(Gp, Gg) =
{

(e1, e2) ∈ Ep×Eg
∣∣∣ y(e1) = y(e2)∧`p(e1) = `g(e2)

}
The yield y(e) ⊆ W of an edge e = (u, v) in either graph is the set
of terminals in W that are descendants of v . ` is the edge label.

Labeled precision, recall and F-score are then defined as:

LP = |M(Gp, Gg)|
|Ep|

, LR = |M(Gp, Gg)|
|Eg |

,

LF = 2 · LP · LR
LP + LR .

Two variants: one for primary edges, and another for remote edges.

	Introduction
	The UCCA Semantic Representation Scheme
	Transition-based UCCA Parsing
	Experiments
	Discussion
	Future Work
	Backup

