Universal Meaning Representation Parsing

Daniel Hershcovich Joint work with Omri Abend and Ari Rappoport

Seminar in Computational Linguistics Uppsala University November 29, 2019

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Translate:

דניאל עבר לקופנהגן אחרי שסיים את הלימודים

After graduation, Daniel moved to Copenhagen

Infer:

After graduation, Daniel moved to Copenhagen

Simplify:

After graduation, Daniel moved to Copenhagen

Daniel graduated. Then Daniel moved to Copenhagen.

דניאל עבר לקופנהגן אחרי שסיים את הלימודים

After graduation, <u>Daniel</u> moved to Copenhagen

Daniel graduated. Then Daniel moved to Copenhagen.

Neural models require the right *inductive bias*.

דניאל עבר לקופנהגן אחרי שסיים את הלימודים

After graduation, <u>Daniel</u> moved to Copenhagen

Daniel graduated. Then Daniel moved to Copenhagen.

Neural models require the right *inductive bias*.

Symbolic Structure Representation

Relations between words or concepts.

Example: syntactic (UD)/semantic (DM) bi-lexical dependencies.

Meaning Representation

Abstract away from detail that does not affect meaning:

Abstract away from detail that does not affect meaning:

 $[math{graduated}] \approx [math{orall} args and a constraint of the second state of the s$

But capture useful distinctions, such as:

- Scene linkage
- Multi-word chunking

Abstract away from detail that does not affect meaning:

 $[math{graduated}] \approx [math{orall} args and a constraint of the second state of the s$

But capture useful distinctions, such as:

- Scene linkage
- Multi-word chunking

Abstract away from detail that does not affect meaning:

 $[math{graduated}] \approx [math{orall} args and a constraints] \approx [Abschluss]$

But capture useful distinctions, such as:

- Scene linkage
- Multi-word chunking

Outline

2 Cross-lingual Parsing

3 Cross-framework Parsing

What Distinguishes Meaning Representations?

Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena. [Abend and Rappoport, 2013]

Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena. Cross-linguistically applicable and stable [Sulem et al., 2015].

Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena. Cross-linguistically applicable and stable [Sulem et al., 2015].

UCCA

UCCA Applications

Semantics-based evaluation of

- Machine translation [Birch et al., 2016].
- Text simplification [Sulem et al., 2018a].
- Grammatical error correction [Choshen and Abend, 2018].

Sentence splitting for text simplification [Sulem et al., 2018b].

UCCA Applications

Semantics-based evaluation of

- Machine translation [Birch et al., 2016].
- Text simplification [Sulem et al., 2018a].
- Grammatical error correction [Choshen and Abend, 2018].

UCCA

Sentence splitting for text simplification [Sulem et al., 2018b].

UCCA Applications

Semantics-based evaluation of

- Machine translation [Birch et al., 2016].
- Text simplification [Sulem et al., 2018a].
- Grammatical error correction [Choshen and Abend, 2018].

UCCA

Sentence splitting for text simplification [Sulem et al., 2018b].

He came back home and played piano.

Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges. Text tokens are terminals, complex units are non-terminal nodes.

Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges. Text tokens are terminals, complex units are non-terminal nodes. Phrases may be discontinuous.

Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges. Text tokens are terminals, complex units are non-terminal nodes. Phrases may be **discontinuous**. *Remote edges* enable reentrancy.

Daniel Hershcovich

Structural Properties

UCCA Data

- English Wikipedia articles (158K tokens).
- Jules Verne's *Twenty Thousand Leagues Under the Sea* (12K English tokens, 12K French tokens, 144K German tokens).
- English Web Treebank reviews (55K tokens).

Data Statistics

	Wiki		20K		EWT
	en	en	fr	de	en
# sentences	5,141	492	492	6,514	3,813
# tokens	158K	12K	12K	144K	55K
# non-terminal nodes	62,002	4,699	5,110	51,934	18,156
% discontinuous	1.71	3.19	4.64	8.87	3.87
% reentrant	1.84	0.89	0.65	0.31	0.83
# edges	208,937	16,803	17,520	187,533	60,739
% primary	97.40	96.79	97.02	97.32	97.32
% remote	2.60	3.21	2.98	2.68	2.68

・ロト ・日下・ ・ ヨト・

э

UCCA Parsing

They thought about taking a short break

< 一型

TUPA: Transition-based UCCA Parser

Parses text $w_1 \dots w_n$ to graph *G* incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph [Hershcovich, Abend, and Rappoport, 2017].

UCCA

TUPA: Transition-based UCCA Parser

Parses text $w_1 \dots w_n$ to graph *G* incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph [Hershcovich, Abend, and Rappoport, 2017].

UCCA

Initial state:

stack buffer They thought about taking a short break

TUPA: Transition-based UCCA Parser

Parses text $w_1 \dots w_n$ to graph *G* incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph [Hershcovich, Abend, and Rappoport, 2017].

UCCA

Initial state:

stack buffer They thought about taking a short break

TUPA transitions: {SHIFT, REDUCE, NODE_X, LEFT-EDGE_X, RIGHT-EDGE_X, LEFT-REMOTE_X, RIGHT-REMOTE_X, SWAP, FINISH}

These transitions enable non-terminal nodes, reentrancy and discontinuity.

UCCA

Training

An *oracle* provides the transition sequence given the correct graph:

SHIFT, RIGHT-EDGE_A, SHIFT, SWAP, RIGHT-EDGE_P, REDUCE, SHIFT, SHIFT, NODE_R, REDUCE, LEFT-REMOTE_A, SHIFT, SHIFT, NODE_C, REDUCE, SHIFT, RIGHT-EDGE_P, SHIFT, RIGHT-EDGE_F, REDUCE, SHIFT, SWAP, RIGHT-EDGE_D, REDUCE, SWAP, RIGHT-EDGE_A, REDUCE, REDUCE, SHIFT, REDUCE, SHIFT, RIGHT-EDGE_C, FINISH

 \Rightarrow Shift

\Rightarrow Right-Edge_A

 \Rightarrow Shift

 \Rightarrow Swap

\Rightarrow Right-Edge_P

\Rightarrow Reduce

Daniel Hershcovich

 $\Rightarrow \text{NODE}_R$

Daniel Hershcovich

 \Rightarrow Reduce

 \Rightarrow Shift

Daniel Hershcovich

\Rightarrow Left-Remote_A

Daniel Hershcovich

 $\Rightarrow \text{NODE}_{C}$

 \Rightarrow Reduce

\Rightarrow Right-Edge_P

 \Rightarrow Right-Edge_F

 \Rightarrow Reduce

 \Rightarrow Swap

\Rightarrow Right-Edge_D

 \Rightarrow Reduce

 \Rightarrow Swap

 \Rightarrow Right-Edge_A

 \Rightarrow Reduce

 \Rightarrow Reduce

 \Rightarrow Reduce

$\Rightarrow \operatorname{Right-Edge}_{\mathcal{C}}$

 \Rightarrow Finish

TUPA Model

Learns to greedily predict transition based on current state.

Features include:

{words, parts of speech, syntactic dependencies, existing edge labels} from the stack and buffer + parents, children, grandchildren.

TUPA Model

Learns to greedily predict transition based on current state.

Comparing to Existing Methods

Using conversion-based approximation as baseline, with bi-lexical DAG parsers and transition-based tree parsers.

UCCA

UCCA bi-lexical DAG approximation.

Bi-lexical Graph Approximation

UCCA

Evaluation

- Match primary edges between the graphs by terminal yield and label.
- ② Calculate precision, recall and F1 scores.
- 8 Repeat for remote edges.

UCCA

Evaluation

- Match primary edges between the graphs by terminal yield and label.
- ② Calculate precision, recall and F1 scores.
- Repeat for remote edges.

Primary
 Remote

 P
 R
 F1

$$\frac{6}{9} = 67\%$$
 $\frac{6}{10} = 60\%$
 64%
 Remote

 $\frac{1}{2} = 50\%$
 $\frac{1}{1} = 100\%$
 67%

Outline

3 Cross-framework Parsing

What Distinguishes Meaning Representations?

- ∢ 🗗 ▶

SemEval 2019: Cross-lingual UCCA Parsing

Shared task: parsing text to UCCA graphs [Hershcovich, Choshen, Sulem, Aizenbud, Rappoport, and Abend, 2019b].

- Data: UCCA for English, French, German.
- Baseline: TUPA.
- Participants: 8 teams from 6 countries.

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

UCCA Graph Parsing as Constituent Tree Parsing

Winning system: HLT@SUDA (Suzhou, China). Neural constituency parser + multilingual BERT.

Outline

What Distinguishes Meaning Representations?

Image: A matrix and a matrix

Cross-framework Parsing

Meaning Representations

Syntactic Representations

UD (Universal Dependencies)

Data

UCCA training data is scarce

- (日)

э

Data

UCCA training data is scarce

and domains are limited.

< □ > < 同 >

UCCA	AMR	DM	UD
Wikipedia	blogs	news	blogs
books	news		news
reviews	emails		emails
	reviews		reviews
			Q&A

э

Conversion

Multi-task

æ

メロト メポト メヨト メヨト

Multi-task

Results

э

- ∢ ⊒ →

CoNLL 2019: Cross-framework MRP

Shared task: parsing text to graphs in five frameworks [Oepen, Abend, Hajič, Hershcovich, Kuhlmann, O'Gorman, Xue, Chun, Straka, and Urešová, 2019].

- Data: DM, PSD, EDS, UCCA and AMR for English.
- Baseline: TUPA.
- Participants: 18 teams from 8 countries.

Results

Cross-framework Parsing

Unified Pipeline for Meaning Representation Parsing

Winning system: HIT-SCIR (Harbin, China).

Transition-based parser (similar to TUPA) + efficient training + BERT.

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

2 Cross-lingual Parsing

3 Cross-framework Parsing

UCCA vs. UD

< 47 ▶

э

UCCA vs. UD

UCCA vs. UD

Assimilating the Graph Structures

- (日)

Assimilating the Graph Structures

Evaluate by matching edges [Hershcovich, Abend, and Rappoport, 2019a].

Assimilating the Graph Structures

Assimilating the Graph Structures

Scenes and non-Scenes, Relations and Participants

Scenes and non-Scenes, Relations and Participants

Scenes and non-Scenes, Relations and Participants

Multi-word Expressions

< 47 ▶

Multi-word Expressions

Multi-word Expressions

Linkage between Scenes

< 一型

Linkage between Scenes

< 一型

Confusion Matrix: EWT Reviews Gold Data

																	NO
	Α	AP	AS	С	D	Е	F	G	н	L	Ν	Ρ	Q	R	S	Т	Match
acl	58			1	4	249	1		48			6			1	1	409
advcl	14			12	2	2		6	512	4		11					423
advmod	225		1	69	1778	332	27	135	14	258	2	2	15	44	9	368	273
amod	25			134	647	837		1	28			7	130	3	269	25	176
appos	21			39	2	34	1005		18	~		-		-	8		33
aux	11			21	384	2	1335			2	26	11	1	1	1 - 4	1	1/
case	11			31	21	25	123	1	1	213	201	11	I	2029	154	T	202
CC	315			0	4	1	4	T	36	1007	201	2	0	12	1	1	52 166
ccompound	225			116	67	586	21		20			22	10	1	12	24	683
compound	10			110	101	500	21	1	1262	1		6	2	T	10	24	/07
con	10			1	-	5	1312	-	1202	î		ğ	2	10	178		7
csubi	13			-			1012		3	-		5		10	110		46
det	10			17	119	440	2963		•		1		129	16	1		124
discourse	1			2	1		25	29	27	16	-				5		19
expl	21			1			98								17		3
ioḃ́j	131			1			1										10
lisť	3			7	2	1			27						1		6
mark				9	7	_1	531	1		654				407	1	5	143
nmod	844	1	1	20	9	786	8	4	12	1	1	20	2	2	11	27	488
nsubj	4296	(21	25	3	2	55	Ţ	5	61		58	1	80	14	4	247
nummod	1045		1	33	12	11	11	4	4	4		F0	334	22	2	11	64
obj	1845		T	54	21	0	11	17	4	23		52	I	23	3	11	583
obl	1195		1	19	115	41	1	11	39	34		6	6	26	2	302	011
parataxis	17		T	5		4		0	200						З		100
vocative	121			Λ	25			0	8			38			38		526
head	115	18	150	6388	717	1/2	564	83	2462	12	1	1163	120	52	15/7	32	2235
No MATCH	1421	37	58	640	417	201	14	33	2201	146	6	802	94	52	360	96	2233
1.0 1.14101	1721	51	50	0.10	111	271	11	55	2271	1 10	9	002	54	52	505	20	

Image: A matrix and a matrix

э

Fine-grained UCCA Parsing Evaluation

Ongoing Work

Complement syntax with *lexical* semantics to make up for differences.

Conclusion

• Meaning representation is valuable for language understanding.

Conclusion

- Meaning representation is valuable for language understanding.
- Transition-based parsers excel across frameworks and languages.
Conclusion

- Meaning representation is valuable for language understanding.
- Transition-based parsers excel across frameworks and languages.
- Cross-framework unification by multi-task and linguistic analysis.

Conclusion

- Meaning representation is valuable for language understanding.
- Transition-based parsers excel across frameworks and languages.
- Cross-framework unification by multi-task and linguistic analysis.

References I

- Omri Abend and Ari Rappoport. Universal Conceptual Cognitive Annotation (UCCA). In Proc. of ACL, pages 228–238, August 2013. URL http://aclweb.org/anthology/P13-1023.
- Alexandra Birch, Omri Abend, Ondřej Bojar, and Barry Haddow. HUME: Human UCCA-based evaluation of machine translation. In Proc. of EMNLP, pages 1264–1274, November 2016. URL http://aclweb.org/anthology/D16-1134.
- Leshem Choshen and Omri Abend. Reference-less measure of faithfulness for grammatical error correction. In Proc. of NAACL-HLT, 2018. URL http://aclweb.org/anthology/N18-2020.
- Daniel Hershcovich, Omri Abend, and Ari Rappoport. A transition-based directed acyclic graph parser for ucca. In Proc. of ACL, pages 1127–1138, 2017. URL http://aclweb.org/anthology/P17-1104.
- Daniel Hershcovich, Omri Abend, and Ari Rappoport. Multitask parsing across semantic representations. In Proc. of ACL, pages 373–385, 2018. URL http://aclweb.org/anthology/P18-1035.
- Daniel Hershcovich, Omri Abend, and Ari Rappoport. Content differences in syntactic and semantic representation. In Proc. of NAACL-HLT, pages 478–488, June 2019a. URL https://aclweb.org/anthology/N19-1047.
- Daniel Hershcovich, Leshem Choshen, Elior Sulem, Zohar Aizenbud, Ari Rappoport, and Omri Abend. SemEval 2019 task 1: Cross-lingual semantic parsing with UCCA. In Proc. of SemEval, 2019b. URL https://aclweb.org/anthology/S19-2001.
- Stephan Oepen, Omri Abend, Jan Hajič, Daniel Hershcovich, Marco Kuhlmann, Tim O'Gorman, Nianwen Xue, Jayeol Chun, Milan Straka, and Zdeňka Urešová. MRP 2019: Cross-framework Meaning Representation Parsing. In Proc. of CoNLL MRP Shared Task, pages 1-27, 2019. URL https://aclueb.org/anthology/K19-2001.pdf.
- Elior Sulem, Omri Abend, and Ari Rappoport. Conceptual annotations preserve structure across translations: A French-English case study. In *Proc. of S2MT*, pages 11–22, 2015. URL http://aclweb.org/anthology/W15-3502.
- Elior Sulem, Omri Abend, and Ari Rappoport. Semantic structural annotation for text simplification. In Proc. of NAACL, 2018a.
- Elior Sulem, Omri Abend, and Ari Rappoport. Simple and effective text simplification using semantic and neural methods. In *Proc. of ACL*, 2018b.

э

< □ > < 同 > < 回 > < 回 > < 回 >