
Universal Meaning Representation Parsing

Daniel Hershcovich
Joint work with Omri Abend and Ari Rappoport

Seminar in Computational Linguistics
Uppsala University
November 29, 2019

Daniel Hershcovich November 29, 2019 1 / 44



What can we teach computers to do with language?

Translate:

םידומילהתאםייסשירחאןגהנפוקלרבעלאינד

Daniel Hershcovich November 29, 2019 2 / 44



What can we teach computers to do with language?

Translate:

םידומילהתאםייסשירחאןגהנפוקלרבעלאינד
After graduation, Daniel moved to Copenhagen

Daniel Hershcovich November 29, 2019 2 / 44



What can we teach computers to do with language?

Translate:

םידומילהתאםייסשירחאןגהנפוקלרבעלאינד

After graduation, Daniel moved to Copenhagen
Recognize
entities:

↓ ↓
Person Location

Daniel Hershcovich November 29, 2019 2 / 44



What can we teach computers to do with language?

Translate:

םידומילהתאםייסשירחאןגהנפוקלרבעלאינד

After graduation, Daniel moved to CopenhagenInfer:

↓
Daniel graduated.

Daniel Hershcovich November 29, 2019 2 / 44



What can we teach computers to do with language?

Translate:

םידומילהתאםייסשירחאןגהנפוקלרבעלאינד

After graduation, Daniel moved to Copenhagen
Simplify:

Daniel graduated. Then Daniel moved to Copenhagen.

Daniel Hershcovich November 29, 2019 2 / 44



What can we teach computers to do with language?

Translate:

םידומילהתאםייסשירחאןגהנפוקלרבעלאינד
After graduation, Daniel moved to Copenhagen

Daniel graduated. Then Daniel moved to Copenhagen.

Neural models require the right inductive bias.

. . .

. . .

Daniel Hershcovich November 29, 2019 2 / 44



What can we teach computers to do with language?

Translate:

םידומילהתאםייסשירחאןגהנפוקלרבעלאינד
After graduation, Daniel moved to Copenhagen

Daniel graduated. Then Daniel moved to Copenhagen.

Neural models require the right inductive bias.

. . .

. . .

Daniel Hershcovich November 29, 2019 2 / 44



Symbolic Structure Representation

Relations between words or concepts.

Example: syntactic (UD)/semantic (DM) bi-lexical dependencies.

After graduation , Daniel moved to Copenhagen
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Meaning Representation

Abstract away from detail that does not affect meaning:

graduation ≈ graduated ≈ םידומילהתאםייס ≈ Abschluss

But capture useful distinctions, such as:

Scenes and participants
Scene linkage
Multi-word chunking
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UCCA

Outline

1 UCCA

2 Cross-lingual Parsing

3 Cross-framework Parsing

4 What Distinguishes Meaning Representations?
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UCCA

Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena.
[Abend and Rappoport, 2013]

Cross-linguistically applicable and stable
[Sulem et al., 2015].
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UCCA

UCCA Applications

Semantics-based evaluation of
Machine translation [Birch et al., 2016].
Text simplification [Sulem et al., 2018a].
Grammatical error correction [Choshen and Abend, 2018].

Sentence splitting for text simplification [Sulem et al., 2018b].
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UCCA

Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges.
Text tokens are terminals, complex units are non-terminal nodes.

Phrases may be discontinuous. Remote edges enable reentrancy.
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UCCA

Structural Properties
(1) non-terminal nodes
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UCCA

UCCA Data

English Wikipedia articles (158K tokens).
Jules Verne’s Twenty Thousand Leagues Under the Sea
(12K English tokens, 12K French tokens, 144K German tokens).
English Web Treebank reviews (55K tokens).
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UCCA

Data Statistics

Wiki 20K EWT

en en fr de en

# sentences 5,141 492 492 6,514 3,813

# tokens 158K 12K 12K 144K 55K

# non-terminal nodes 62,002 4,699 5,110 51,934 18,156

% discontinuous 1.71 3.19 4.64 8.87 3.87

% reentrant 1.84 0.89 0.65 0.31 0.83

# edges 208,937 16,803 17,520 187,533 60,739

% primary 97.40 96.79 97.02 97.32 97.32

% remote 2.60 3.21 2.98 2.68 2.68
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UCCA

UCCA Parsing

They thought about taking a short break

⇓

They

A

thought

P

about

R

taking

F

a

F

short break

C

P

A

A D

Daniel Hershcovich November 29, 2019 12 / 44



UCCA

TUPA: Transition-based UCCA Parser

Parses text w1 . . . wn to graph G incrementally by applying transitions to
the parser state, consisting of: stack, buffer and constructed graph
[Hershcovich, Abend, and Rappoport, 2017].

Initial state:
stack buffer

They thought about taking a short break

TUPA transitions:
{Shift, Reduce, NodeX , Left-EdgeX , Right-EdgeX ,

Left-RemoteX , Right-RemoteX , Swap, Finish}

These transitions enable non-terminal nodes, reentrancy and discontinuity.
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UCCA

Training

An oracle provides the transition sequence given the correct graph:
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Shift, Right-EdgeA, Shift, Swap, Right-EdgeP , Reduce, Shift, Shift, NodeR ,
Reduce, Left-RemoteA, Shift, Shift, NodeC , Reduce, Shift, Right-EdgeP ,
Shift, Right-EdgeF , Reduce, Shift, Swap, Right-EdgeD , Reduce, Swap,
Right-EdgeA, Reduce, Reduce, Shift, Reduce, Shift, Right-EdgeC , Finish
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UCCA

Example: TUPA Transition Sequence
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UCCA

Example: TUPA Transition Sequence
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UCCA

Example: TUPA Transition Sequence
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UCCA

Example: TUPA Transition Sequence
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UCCA

Example: TUPA Transition Sequence
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UCCA

Example: TUPA Transition Sequence
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UCCA

Example: TUPA Transition Sequence
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UCCA

Example: TUPA Transition Sequence
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UCCA

TUPA Model

Learns to greedily predict transition based on current state.

Features include:
{words, parts of speech, syntactic dependencies, existing edge labels}
from the stack and buffer + parents, children, grandchildren.
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UCCA

Comparing to Existing Methods

Using conversion-based approximation as baseline,
with bi-lexical DAG parsers and transition-based tree parsers.

They thought about taking a short break

A

A

R
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F

D

A

UCCA bi-lexical DAG approximation.
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UCCA

Bi-lexical Graph Approximation

1 Convert UCCA to bi-lexical DAGs.
2 Train bi-lexical parsers.
3 Parse test set.
4 Convert to UCCA.
5 Evaluate. After
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UCCA

Evaluation

True (human-annotated) graph
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Automatically predicted graph for the same text
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1 Match primary edges between the graphs by terminal yield and label.
2 Calculate precision, recall and F1 scores.
3 Repeat for remote edges.

Primary
P R F1

6
9 = 67% 6

10 = 60% 64%

Remote
P R F1

1
2 = 50% 1

1 = 100% 67%
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Cross-lingual Parsing

SemEval 2019: Cross-lingual UCCA Parsing

Shared task: parsing text to UCCA graphs [Hershcovich, Choshen, Sulem,
Aizenbud, Rappoport, and Abend, 2019b].

Data: UCCA for English, French, German.
Baseline: TUPA.
Participants: 8 teams from 6 countries.
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Cross-lingual Parsing

UCCA Graph Parsing as Constituent Tree Parsing

Winning system: HLT@SUDA (Suzhou, China).
Neural constituency parser + multilingual BERT.
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Cross-framework Parsing
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Cross-framework Parsing

Meaning Representations
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Cross-framework Parsing

Syntactic Representations

UD (Universal Dependencies)
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Cross-framework Parsing

Data

UCCA training data is scarce

(English)

UD
DM

AMR
UCCA

and domains are limited.

UCCA AMR DM UD
Wikipedia blogs news blogs
books news news
reviews emails emails

reviews reviews
Q&A
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Cross-framework Parsing

Conversion
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Cross-framework Parsing

Multi-task
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Cross-framework Parsing

Results
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Cross-framework Parsing

TUPA output:
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Cross-framework Parsing

CoNLL 2019: Cross-framework MRP

Shared task: parsing text to graphs in five frameworks [Oepen, Abend,
Hajič, Hershcovich, Kuhlmann, O’Gorman, Xue, Chun, Straka, and
Urešová, 2019].

Data: DM, PSD, EDS, UCCA and AMR for English.
Baseline: TUPA.
Participants: 18 teams from 8 countries.
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Cross-framework Parsing

Results

Overall DM PSD EDS UCCA AMR
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Cross-framework Parsing

Unified Pipeline for Meaning Representation Parsing

Winning system: HIT-SCIR (Harbin, China).
Transition-based parser (similar to TUPA) + efficient training + BERT.
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What Distinguishes Meaning Representations?

UCCA vs. UD

Many formal differences.
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What Distinguishes Meaning Representations?

Assimilating the Graph Structures
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Evaluate by matching edges [Hershcovich, Abend, and Rappoport, 2019a].
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What Distinguishes Meaning Representations?

Scenes and non-Scenes, Relations and Participants
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What Distinguishes Meaning Representations?

Multi-word Expressions
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What Distinguishes Meaning Representations?

Linkage between Scenes
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What Distinguishes Meaning Representations?

Confusion Matrix: EWT Reviews Gold Data
No

A A
∣∣P A

∣∣S C D E F G H L N P Q R S T Match
acl 58 1 4 249 1 48 6 1 1 409
advcl 14 12 2 2 6 512 4 11 423
advmod 225 1 69 1778 332 27 135 14 258 2 2 15 44 9 368 273
amod 25 134 647 837 1 28 7 130 3 269 25 176
appos 21 39 2 34 18 8 33
aux 384 2 1335 2 1 1 17
case 11 31 27 25 123 213 26 11 1 2629 154 1 262
cc 8 4 1 4 1 1 1567 381 6 12 52
ccomp 345 1 1 36 2 1 1 166
compound 225 116 67 586 21 2 32 19 1 12 24 683
conj 10 449 4 5 1 1262 1 6 2 10 497
cop 1 1312 1 9 10 178 7
csubj 13 3 46
det 10 17 119 440 2963 1 129 16 1 124
discourse 1 2 1 25 29 27 16 5 19
expl 21 1 98 17 3
iobj 131 1 1 10
list 3 7 2 1 27 1 6
mark 9 7 1 531 1 654 407 1 5 143
nmod 844 1 1 20 9 786 8 4 12 1 1 20 2 2 11 27 488
nsubj 4296 7 21 25 3 2 55 1 5 61 58 1 80 14 4 247
nummod 2 33 12 17 4 4 334 64
obj 1845 1 54 21 6 11 1 4 23 52 1 23 3 11 583
obl 1195 19 115 41 1 17 39 34 6 6 26 7 302 611
parataxis 6 1 5 4 6 285 3 180
vocative 17 8
xcomp 121 4 25 8 38 38 526
head 445 48 159 6388 717 142 564 83 2462 42 1 4163 120 52 1547 32 2235
No Match 1421 37 58 640 417 291 14 33 2291 146 6 802 94 52 369 96
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What Distinguishes Meaning Representations?

Fine-grained UCCA Parsing Evaluation
au

x
de

t
co

p cc
ex

pl
io

bj
ns

ub
j

ca
se lis
t

ad
vm

od
am

od
nu

m
m

od
m

ar
k

vo
ca

tiv
e

co
m

po
un

d
ob

j
nm

od
co

nj
ad

vc
l

ob
l

xc
om

p
di

sc
ou

rs
e

cc
om

p
pa

ra
ta

xi
s

ap
po

s
ac

l
cs

ub
j

0

20

40

60

80

100

TU
PA

F1
(%

)

Unlabeled
Labeled

Daniel Hershcovich November 29, 2019 42 / 44



What Distinguishes Meaning Representations?

Ongoing Work

Complement syntax with lexical semantics to make up for differences.

 2

We took our vehicle in for a repair to the air conditioning .

We took our vehicle in for a repair to the air conditioning

PRON V.VPC.full PRON.POSS N P DET N P DET N 

v.Motion p.Possessor n.Artifact p.Purpose n.Act p.Theme n.Artifact

PRP VBD PRP$ NN RB IN DT NN IN DT NN NN

nsubj nmod:poss det compound
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Conclusion

Meaning representation is valuable for language understanding.

Transition-based parsers excel across frameworks and languages.
Cross-framework unification by multi-task and linguistic analysis.
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