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What can we teach computers to do with language?

Recognize _ _
entities: After graduation, Daniel moved to Copenhagen
\J \J
Person Location
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What can we teach computers to do with language?

Infer: After graduation, Daniel moved to Copenhagen

J
‘ Daniel graduated. ‘
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What can we teach computers to do with language?

Simplify:

After graduation, Daniel moved to Copenhagen‘

‘Daniel graduated. Then Daniel moved to Copenhagen.‘
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Neural models require the right inductive bias.
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Symbolic Structure Representation

Relations between words or concepts.

Example: syntactic (UD)/semantic (DM) bi-lexical dependencies.

[
{obl}
(nsubj]
After graduation , Daniel

[y |
‘obl,

f

moved to Copenhagen

ARG2 ARG1 ARG1 ARG2
(ARC1) (ARCO)
{ARG1} {ARG2}
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Meaning Representation

Abstract away from detail that does not affect meaning:

‘graduation‘ R ‘graduated ‘ R~ ‘ D'TIN"?N NN D"D‘ R~ ’ Abschluss‘
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Meaning Representation

Abstract away from detail that does not affect meaning:

‘graduation‘ R ‘graduated ‘ R~ ‘ D'TIN"?N NN D"D‘ R~ ’ Abschluss‘

But capture useful distinctions, such as:

@ Scenes and participants
@ Scene linkage
o Multi-word chunking

Nach seinem Abschluss zog Daniel um
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Outline

@ ucca
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UCCA

Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena.
[Abend and Rappoport, 2013]
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Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena.
Cross-linguistically applicable and stable [Sulem et al., 2015].
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Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena.
Cross-linguistically applicable and stable [Sulem et al., 2015].
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UCCA Applications

Semantics-based evaluation of
e Machine translation [Birch et al., 2016].
e Text simplification [Sulem et al., 2018a].
e Grammatical error correction [Choshen and Abend, 2018].

Sentence splitting for text simplification [Sulem et al., 2018b].
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UCCA Applications

Semantics-based evaluation of

e Machine translation [Birch et al., 2016].

e Text simplification [Sulem et al., 2018a].

e Grammatical error correction [Choshen and Abend, 2018].
Sentence splitting for text simplification [Sulem et al., 2018b].

He came back home and played piamo

S
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He gave her an apple A T A s
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He came back home. He played piano.
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UCCA
Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges.
Text tokens are terminals, complex units are non-terminal nodes.

taking a short break
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UCCA
Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges.
Text tokens are terminals, complex units are non-terminal nodes.
Phrases may be discontinuous.

They thought

P Process

A Participant
C  Center

D  Adverbial
R Relator

F

taking a short break

Function
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UCCA
Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges.
Text tokens are terminals, complex units are non-terminal nodes.
Phrases may be discontinuous.  Remote edges enable

—— primary edge

- - - remote edge
They thought

P Process

A Participant
C  Center

D Adverbial
R Relator

F

taking a short break

Function
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UCCA
Structural Properties

(1) non-terminal nodes (2) discontinuity
P P
went home John A
N
John and Mary gave everything up

graduation Daniel moved

m

to  Copenhagen
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UCCA Data

e English Wikipedia articles (158K tokens).

o Jules Verne's Twenty Thousand Leagues Under the Sea
(12K English tokens, 12K French tokens, 144K German tokens).

@ English Web Treebank reviews (55K tokens).
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UCCA
Data Statistics

Wiki 20K EWT
en en fr de en

# sentences 5,141 492 492 6,514 | 3,813
# tokens 158K 12K 12K 144K 55K
# non-terminal nodes | 62,002 | 4,699 5,110 51,934 | 18,156
% discontinuous 1.71 3.19 4.64 8.87 3.87
% 1.84 0.89 0.65 0.31 0.83
# edges 208,937 | 16,803 17,520 187,533 | 60,739
% primary 97.40 | 96.79 97.02 97.32 | 97.32
% remote 2.60 3.21 2.98 2.68 2.68
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UCCA Parsing

They thought about taking a short break

N

They thought

taking a short break
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TUPA: Transition-based UCCA Parser

Parses text wy ...w, to graph G incrementally by applying transitions to
the parser state, consisting of: stack, buffer and constructed graph
[Hershcovich, Abend, and Rappoport, 2017].
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TUPA: Transition-based UCCA Parser

Parses text wy ...w, to graph G incrementally by applying transitions to
the parser state, consisting of: stack, buffer and constructed graph
[Hershcovich, Abend, and Rappoport, 2017].

Initial state:
stack buffer
II| ‘ They ‘ thought‘ about ‘ taking ‘ a ‘ short ‘ break ‘

TUPA transitions:
{SHIFT, REDUCE, NODEx, LEFT-EDCGEYX, RIGHT-EDGEY,
, SWAP, FINISH}

b
These transitions enable non-terminal nodes, and discontinuity.
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Training

An oracle provides the transition sequence given the correct graph:

They thought

taking a short break

SHIFT, RIGHT-EDGE,, SHIFT, SWAP, RIGHT-EDGEp, REDUCE, SHIFT, SHIFT, NODER,
REDUCE, LEFT-REMOTE,, SHIFT, SHIFT, NODE¢, REDUCE, SHIFT, RIGHT-EDGEp,
SHIFT, RIGHT-EDGEF, REDUCE, SHIFT, SWAP, RIGHT-EDGEp, REDUCE, SWAP,
RIGHT-EDGE4, REDUCE, REDUCE, SHIFT, REDUCE, SHIFT, RIGHT-EDGE¢, FINISH

Daniel Hershcovich November 29, 2019 14 /44



Example: TUPA Transition Sequence

= SHIFT
stack buffer
u ‘ thought‘ about ‘ taking ‘ a ‘ short ‘ break ‘
graph o
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Example: TUPA Transition Sequence

= SWAP
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“ I They I about ‘ taking ‘ a ‘ short ‘ break ‘
graph
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Daniel Hershcovich November 29, 2019 15/44



Example: TUPA Transition Sequence

= RIGHT-EDGEp

stack buffer
n ‘ They ‘ about ‘ taking ‘ a ‘ short ‘ break ‘
graph
P
They thought

Daniel Hershcovich November 29, 2019 15/44



Example: TUPA Transition Sequence

= REDUCE
stack buffer
lj ‘ They ‘ about ‘ taking ‘ a ‘ short ‘ break ‘
graph
P
They thought

Daniel Hershcovich November 29, 2019 15/44



Example: TUPA Transition Sequence

= SHIFT
stack buffer
u ‘ about ‘ taking ‘ a ‘ short ‘ break ‘
graph
P
They thought

Daniel Hershcovich November 29, 2019 15/44



Example: TUPA Transition Sequence

= SHIFT
stack buffer
I:. ‘They Iabout I ‘taking ‘a ‘short ‘break ‘
graph
P
They thought

Daniel Hershcovich November 29, 2019 15/44



Example: TUPA Transition Sequence
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P
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Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence

= LEFT-REMOTE4

stack buffer
@ [Ty [ @ taking (o [short [ break|
graph
P
They
T<
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Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence

= RIGHT-EDGEF

stack

@ ey @ [ @ |2 |

buffer

graph
P

They thought
¥

taking a
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Example: TUPA Transition Sequence
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UCCA

Example: TUPA Transition Sequence

= RIGHT-EDGEp

stack

@ [Ty [@ [ |

buffer

@ [buk

graph
P

They thought
¥

taking

short
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Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence

= SHIFT

stack

buffer

@ [k

LIS

graph
P A
They thought

- R P

A
%
E
F
a

taking
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Example: TUPA Transition Sequence

= REDUCE
stack buffer
] @ [beak
graph
P
They
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Example: TUPA Transition Sequence

= SHIFT
stack buffer
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graph
P
They
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Example: TUPA Transition Sequence

= RIGHT-EDGE(¢

stack buffer

@ [k | I

graph

They
¥

taking a short break

Daniel Hershcovich November 29, 2019 15/44



Example: TUPA Transition Sequence

= FINISH
stack buffer
@ b I
graph
P
They thought

taking

short

break
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TUPA Model

Learns to greedily predict transition based on current state.

Features include:
{words, parts of speech, syntactic dependencies, existing edge labels}

from the stack and buffer + parents, children, grandchildren.

stack buffer
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TUPA Model

Learns to greedily predict transition based on current state.

stack‘ [ ‘They ‘ [ ‘taking‘ B graph

THey  thought
R

t

taking

bufFer‘ o ‘a ‘Short ‘break ‘

NODE¢

| AN

N
T (KT KT (KT KT (KT
)

thought about taking short  break

Theéy
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Comparing to Existing Methods

Using conversion-based approximation as baseline,
with bi-lexical DAG parsers and transition-based tree parsers.

‘
taking a short break

They thought about
UCCA bi-lexical DAG approximation.

Daniel Hershcovich November 29, 2019 17 /44



Bi-lexical Graph Approximation

@ Convert UCCA to bi-lexical DAGs.
@ Train bi-lexical parsers.

© Parse test set.
@ Convert to UCCA. H

Evaluate.
© After ).
P \\\A
pN

\/) graduation John moved
R C
@
- {A- - to Copenhagen
—R—

After graduation , John moved to Copenhagen
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Evaluation

True (human-annotated) graph Automatically predicted graph for the same text

H
S ___A
After T After T - el
Pl "~ S| N

o LA |

graduation John moved graduation |

c Y v

John  moved to Copenhagen

to Copenhagen

@ Match primary edges between the graphs by terminal yield and label.
@ Calculate precision, recall and F1 scores.
© Repeat for remote edges.
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Evaluation

True (human-annotated) graph Automatically predicted graph for the same text

A
After T IR
s N
A \

graduati\on
\

graduation John moved

John  moved to Copenhagen
to Copenhagen

@ Match primary edges between the graphs by terminal yield and label.
@ Calculate precision, recall and F1 scores.
© Repeat for remote edges.

Primary Remote
P | R | F1 P | R | F1
$=67% | &% =60% | 64% 3=50% | 1 =100% | 67%

Daniel Hershcovich November 29, 2019 19/44



Cross-lingual Parsing

Outline

© Cross-lingual Parsing
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Cross-lingual Parsing

SemEval 2019: Cross-lingual UCCA Parsing

Shared task: parsing text to UCCA graphs [Hershcovich, Choshen, Sulem,
Aizenbud, Rappoport, and Abend, 2019b].

e Data: UCCA for English, French, German.
@ Baseline: TUPA.

@ Participants: 8 teams from 6 countries.
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Cross-lingual Parsing

UCCA Graph Parsing as Constituent Tree Parsing

Winning system: HLT@SUDA (Suzhou, China).
Neural constituency parser + multilingual BERT.

(Remote {ecovery) (Conscitue?c Parsing )
J
(MLPs and Biaffines ( mps ]
( Shared BiLSTM: )
!
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Cross-framework Parsing

Outline

© Cross-framework Parsing
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Cross-framework Parsing

Meaning Representations

R C

to Copenhagen

ARG1 ARG2

ARG1

After  graduation , Daniel moved to  Copenhagen
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Cross-framework Parsing
Syntactic Representations

UD (Universal Dependencies)

obl

root
obl
case punct nsubj ’ case !
After graduation , Daniel moved to Copenhagen
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Cross-framework Parsing
Data

‘ UCCA training data is scarce‘

UCCA
AMR
DM -
ub -

(English)
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Cross-framework Parsing
Data

‘ UCCA training data is scarce‘

UCCA
AMR
DM -
ub -

(English)

and domains are limited.

UCCA AMR DM UD
Wikipedia blogs news blogs

books news news
reviews emails emails
reviews reviews
Q&A
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Cross-framework Parsing

Conversion

moved

move-01

Daniel Copenhagen

H H o
A M R graduate-01 = i
— 5 graduation

DM =

ARG2

ARG1 o ARG
. . After graduation , Danielmoved to Copenhagen
After graduation , Daniel moved to Copenhagen
obl root

obl
uD case | puer sy o) =
After graduation , Daniel moved to Copenhagen

After graduation,  Daniel moved to Copenhagen
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Cross-framework Parsing

Multi-task

S After  graduation Dael  moved  to  Copenhagen
u root -
graduation  Danel gmduateD E o

2
t Copenhagen  (Copenhagen >
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Cross-framework Parsing

Multi-task

Task-specific BILSTM Shared BiLSTM

T [ | !

After graduation to Copenhagen
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Cross-framework Parsing
Results

English (in-domain) English (ood)

Single I 73.6- N 69 French
+AMR N 737 69.5 Single W676 -
+DM I 746 N 70.7 +UD Ml 70.1 -
+UD I 74.1 [ 69.7
+AMR + DM N 747 N 705 German
+AMR + UD NN 73 NN 70 Single I 72.5
+DM + UD N 740 [ 70.6 +UD I 73.2

+Al - 74+
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TUPA output:

Multi-task TUPA output:
(+AMR+DM+UD)

o ] DN < { O > < > S S S
0SSR & Q\\Q} S \\\m TP P & &
NN > L X0 NPAS A SR S & I @
O NS S > N <0 S
& &b & & A ¢
RS
RS \COEN
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Cross-framework Parsing

CoNLL 2019: Cross-framework MRP

Shared task: parsing text to graphs in five frameworks [Oepen, Abend,
Haji¢, Hershcovich, Kuhlmann, O'Gorman, Xue, Chun, Straka, and
Uresova, 2019].

e Data: DM, PSD, EDS, UCCA and AMR for English.
@ Baseline: TUPA.

@ Participants: 18 teams from 8 countries.
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Cross-framework Parsing
Results

1
B s
0.9 @ @
0.85 g O AN ﬁ
03 O O F@?
0.75 é Q Q Q @

7
Overall DM PSD EDS UCCA AMR
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Cross-framework Parsing

Unified Pipeline for Meaning Representation Parsing

Winning system: HIT-SCIR (Harbin, China).
Transition-based parser (similar to TUPA) + efficient training + BERT.

classifier

{ransition
system

HII

action
history

post-processing

1

1

Daniel Hershcovich

transition-based parser pos lemma ( frame
with
stack LSTM
‘ lagger | ‘ tagger ‘ | lagger ‘
I
BERT ‘

November 29, 2019
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What Distinguishes Meaning Representations?

Outline

@ What Distinguishes Meaning Representations?

Daniel Hershcovich November 29, 2019 35/44



What Distinguishes Meaning Representations?

UCCA vs. UD

graduation Daniel moved [ )
R C
obl root
obl to Copenhagen
UD case punct nsubj case
After graduation , Daniel moved to Copenhagen
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What Distinguishes Meaning Representations?

UCCA vs. UD

Many formal differences. ‘

graduation Daniel moved [ )
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obl root
obl to Copenhagen
UD case punct nsubj ’ case !
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What Distinguishes Meaning Representations?
UCCA vs. UD

UCCA

‘ What about content? ‘

After [ Y
A
P S P

Many formal differences. ‘ Ny

graduation Daniel moved [ )

R C
obl root
obl to Copenhagen

UD case punct nsubj ’ case !
After graduation , Daniel moved to Copenhagen
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What Distinguishes Meaning Representations?

Assimilating the Graph Structures

obl root
obl
U D case punct nsubj case =
After graduation , Daniel moved to Copenhagen

After graduation | Daniel moved to Copenhagen
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What Distinguishes Meaning Representations?

Assimilating the Graph Structures

obl root

obl
U D case punct nsubj case =

After graduation , Daniel moved to Copenhagen After graduation | Daniel moved to Copenhagen

Evaluate by matching edges [Hershcovich, Abend, and Rappoport, 2019a].
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What Distinguishes Meaning Representations?

Assimilating the Graph Structures

After graduation Daniel moved to Copenhagen

Evaluate by matching edges [Hershcovich, Abend, and Rappoport, 2019a].
UCCA

H
After N

A

P N

T
graduation Daniel
R C
to Copenhagen
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What Distinguishes Meaning Representations?

Assimilating the Graph Structures

After graduation Daniel moved to Copenhagen

Evaluate by matching edges [Hershcovich, Abend, and Rappoport, 2019a].

UCCA P | R |F
" 5=89% | % =80% | 84%
After
T A
Pl X
y
graduation Daniel
R C
to Copenhagen
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What Distinguishes Meaning Representations?

Scenes and non-Scenes, Relations and Participants

graduation Daniel moved

Converted UD <

to Copenhagen

After graduation Daniel moved to Copenhagen
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What Distinguishes Meaning Representations?

Scenes and non-Scenes, Relations and Participants
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What Distinguishes Meaning Representations?

Multi-word Expressions

ub

taking a short break
{dobj}

(L)),
[ gy |
{advci}
l

They thought about taking a short break
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What Distinguishes Meaning Representations?

Multi-word Expressions

short break
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What Distinguishes Meaning Representations?

Linkage between Scenes

From the moment you enter ) you know

uD &

e e

From moment enter , you know
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What Distinguishes Meaning Representations?

Confusion Matrix: EWT Reviews Gold Data

No
A APAS C D E F GH L NP Q R S TMarcu

acl 58 1 4 249 1 48 6 1 1 409
advcl 14 12 2 2 6 512 4 11 423
advmod 225 1 69 1778332 27 135 14 258 2 2 15 44 9 368 273
amod 25 134 647 837 1 28 7 130 3 269 25| 176
appos 21 39 2 34 18 8 33
aux 384 2 1335 2 1 1 17
case 11 31 27 25 123 213 26 11 1 [2629 154 1 262
cc 8 4 1 4 1 1 1567381 6 12 52
ccomp 345 1 1 36 2 1 1 166
compound 225 116 67 586 21 2 32 19 1 12 24| 683
conj 10 449 4 5 1 1262 1 6 2 10 497
cop 1 1312 1 9 10 178 7
csubj 13 3 46
det 10 17 119 44012963 1 129 16 1 124
discourse 1 2 1 25 29 27 16 5 19
expl 21 1 98 17 3
iobj 131 1 1 10
list 3 7 2 1 27 1 6
mark 9 7 1 531 1 654 407 1 5| 143
nmod 844 1 1 20 9 78 8 4 12 1 20 2 2 11 27| 488
nsubj ’ 7 21 25 3 2 55 1 5 61 58 1 80 14 4| 247
nummod 33 12 17 4 4 334 64
obj 1845 1 5 21 6 11 1 4 23 52 1 23 3 11| 583
obl 1195 19 115 41 1 17 39 34 6 6 26 7 302 611
parataxis 6 1 5 4 6 285 180
vocative 17 8
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What Distinguishes Meaning Representations?

Fine-grained UCCA Parsing Evaluation
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What Distinguishes Meaning Representations?

Ongoing Work

Complement syntax with /exical semantics to make up for differences.

. ) /
We | took our  vehicle in for a repair to the air conditioning

PRON V.VPC.full PRON.POSS N P DET N P DET N
p.Possessor n.Artifact p.Purpose p.Theme n.Artifact
PRP VBD PRPS NN RBIN DT NN IN DT NN NN

_advmod
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Conclusion

@ Meaning representation is valuable for language understanding.
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After graduation Daniel _ moved to .-’ Copenhagen
[ . Thanks!
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