## Universal Semantic Parsing with Neural Networks

#### Daniel Hershcovich Advisors: Ari Rappoport and Omri Abend

PhD Lecture

February 5, 2019

Daniel Hershcovich

February 5, 2019 1 / 39

Daniel Hershcovich

February 5, 2019 2 / 39

Machine translation:





Image: Image:





Sequence-to-sequence sometimes works, but lacks inductive bias.



#### Linguistic Structured Representations

Model explicit relations between words or concepts.

Example: syntactic/semantic bi-lexical dependencies.



#### Semantic Representations

Abstract away from detail that does not affect meaning:

rest  $\approx$  take a break



#### Semantic Representations



#### Outline

#### D Background: The UCCA Semantic Representation Scheme

2 A Transition-Based DAG Parser for UCCA (ACL'17)

3 Multitask Parsing across Semantic Representations (ACL'18)

 Content Differences between Syntactic and Semantic Representations (under submission) Background: The UCCA Semantic Representation Scheme

#### Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena. [Abend and Rappoport, 2013]



## Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena. Cross-linguistically applicable and stable [Sulem et al., 2015].



## Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena. Cross-linguistically applicable and stable [Sulem et al., 2015].



# UCCA Applications

#### Semantics-based evaluation of

- Machine translation [Birch et al., 2016].
- Text simplification [Sulem et al., 2018a].
- Grammatical error correction [Choshen and Abend, 2018].



## UCCA Applications

#### Semantics-based evaluation of

- Machine translation [Birch et al., 2016].
- Text simplification [Sulem et al., 2018a].
- Grammatical error correction [Choshen and Abend, 2018].

Sentence splitting for text simplification [Sulem et al., 2018b].



### Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges. Text tokens are terminals, complex units are non-terminal nodes.



## Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges. Text tokens are terminals, complex units are non-terminal nodes. Phrases may be discontinuous.



## **Graph Structure**

UCCA structures are directed acyclic graphs (DAGs) with labeled edges. Text tokens are terminals, complex units are non-terminal nodes. Phrases may be **discontinuous**. *Remote edges* enable reentrancy.



## Structural Properties



10/39

## UCCA Data

- English Wikipedia articles (Wiki).
- English-French-German parallel corpus from *Twenty Thousand Leagues Under the Sea* (20K).
- Reviews from the English Web Treebank (EWT).



# **Data Statistics**

|                      | Wiki    |        | EWT    |         |        |
|----------------------|---------|--------|--------|---------|--------|
|                      | en      | en     | fr     | de      | en     |
| # sentences          | 5,141   | 492    | 492    | 6,514   | 3,520  |
| # tokens             | 158,739 | 12,638 | 13,021 | 144,529 | 51,042 |
| # non-terminal nodes | 62,002  | 4,699  | 5,110  | 51,934  | 18,156 |
| % discontinuous      | 1.71    | 3.19   | 4.64   | 8.87    | 3.87   |
| % reentrant          | 1.84    | 0.89   | 0.65   | 0.31    | 0.83   |
| # edges              | 208,937 | 16,803 | 17,520 | 187,533 | 60,739 |
| % primary            | 97.40   | 96.79  | 97.02  | 97.32   | 97.32  |
| % remote             | 2.60    | 3.21   | 2.98   | 2.68    | 2.68   |

э

#### Outline

Background: The UCCA Semantic Representation Scheme

2 A Transition-Based DAG Parser for UCCA (ACL'17)

3 Multitask Parsing across Semantic Representations (ACL'18)

 Content Differences between Syntactic and Semantic Representations (under submission)

Parses text  $w_1 \ldots w_n$  to graph G incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph.

Parses text  $w_1 \ldots w_n$  to graph G incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph.

#### Initial state:

| stack |      |         |       |        |   |       | buffer |
|-------|------|---------|-------|--------|---|-------|--------|
|       | They | thought | about | taking | a | short | break  |

Parses text  $w_1 \ldots w_n$  to graph G incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph.

#### Initial state:



TUPA transitions: {Shift, Reduce, Node<sub>X</sub>, Left-Edge<sub>X</sub>, Right-Edge<sub>X</sub>, Left-Remote<sub>X</sub>, Right-Remote<sub>X</sub>, Swap, Finish}

These transitions enable non-terminal nodes, reentrancy and discontinuity.

# Example: TUPA Transition Sequence

 $\Rightarrow$  Shift



# Example: TUPA Transition Sequence

#### $\Rightarrow$ Right-Edge<sub>A</sub>



Daniel Hershcovich

## Example: TUPA Transition Sequence

 $\Rightarrow$  Shift



## Example: TUPA Transition Sequence

 $\Rightarrow$  Swap



## Example: TUPA Transition Sequence

#### $\Rightarrow$ Right-Edge<sub>P</sub>



Daniel Hershcovich

## Example: TUPA Transition Sequence

 $\Rightarrow$  Reduce



## Example: TUPA Transition Sequence

 $\Rightarrow$  Shift



## Example: TUPA Transition Sequence

 $\Rightarrow$  Shift



## Example: TUPA Transition Sequence

 $\Rightarrow \text{NODE}_R$ 



## Example: TUPA Transition Sequence

 $\Rightarrow$  Reduce



## Example: TUPA Transition Sequence

 $\Rightarrow$  Shift


# Example: TUPA Transition Sequence

#### $\Rightarrow \text{Left-Remote}_{\mathcal{A}}$



Daniel Hershcovich

# Example: TUPA Transition Sequence

 $\Rightarrow$  Shift



## Example: TUPA Transition Sequence

 $\Rightarrow \text{NODE}_{C}$ 



# Example: TUPA Transition Sequence

 $\Rightarrow$  Reduce



# Example: TUPA Transition Sequence

 $\Rightarrow$  Shift



# Example: TUPA Transition Sequence

#### $\Rightarrow$ Right-Edge<sub>P</sub>



Daniel Hershcovich

# Example: TUPA Transition Sequence

 $\Rightarrow$  Shift



# Example: TUPA Transition Sequence

#### $\Rightarrow$ Right-Edge<sub>F</sub>



# Example: TUPA Transition Sequence

 $\Rightarrow$  Reduce



# Example: TUPA Transition Sequence

 $\Rightarrow$  Shift



# Example: TUPA Transition Sequence

 $\Rightarrow$  Swap



# Example: TUPA Transition Sequence

#### $\Rightarrow$ Right-Edge<sub>D</sub>



# Example: TUPA Transition Sequence

 $\Rightarrow$  Reduce



# Example: TUPA Transition Sequence

 $\Rightarrow$  Swap



# Example: TUPA Transition Sequence

 $\Rightarrow$  Right-Edge<sub>A</sub>



# Example: TUPA Transition Sequence

 $\Rightarrow$  Reduce



# Example: TUPA Transition Sequence

 $\Rightarrow$  Reduce



# Example: TUPA Transition Sequence

 $\Rightarrow$  Shift



# Example: TUPA Transition Sequence

 $\Rightarrow$  Reduce



# Example: TUPA Transition Sequence

 $\Rightarrow$  Shift



# Example: TUPA Transition Sequence

#### $\Rightarrow$ RIGHT-EDGE<sub>C</sub>



# Example: TUPA Transition Sequence

 $\Rightarrow$  Finish



# Training

An *oracle* provides the transition sequence given the correct graph:



SHIFT, RIGHT-EDGE<sub>A</sub>, SHIFT, SWAP, RIGHT-EDGE<sub>P</sub>, REDUCE, SHIFT, SHIFT, NODE<sub>R</sub>, REDUCE, LEFT-REMOTE<sub>A</sub>, SHIFT, SHIFT, NODE<sub>C</sub>, REDUCE, SHIFT, RIGHT-EDGE<sub>P</sub>, SHIFT, RIGHT-EDGE<sub>F</sub>, REDUCE, SHIFT, SWAP, RIGHT-EDGE<sub>D</sub>, REDUCE, SWAP, RIGHT-EDGE<sub>A</sub>, REDUCE, REDUCE, SHIFT, REDUCE, SHIFT, RIGHT-EDGE<sub>C</sub>, FINISH

Learns to greedily predict transition based on current state. Experimenting with three classifiers:

SparsePerceptron with sparse features.MLPWord embeddings + MLP.BiLSTMWord embeddings + bidirectional RNN + MLP.

Features include:

{words, parts of speech, syntactic dependencies, existing edge labels} from the stack and buffer + parents, children, grandchildren.



- **Sparse** Perceptron with sparse features.
- **MLP** Word embeddings + MLP.
- **BiLSTM** Word embeddings + **bidirectional RNN** + MLP.



- **Sparse** Perceptron with sparse features.
- **MLP** Word embeddings + MLP.
- **BiLSTM** Word embeddings + **bidirectional RNN** + MLP.



- **Sparse** Perceptron with sparse features.
- **MLP** Word embeddings + MLP.
- **BiLSTM** Word embeddings + **bidirectional RNN** + MLP.



- **Sparse** Perceptron with sparse features.
- **MLP** Word embeddings + MLP.
- **BiLSTM** Word embeddings + **bidirectional RNN** + MLP.





# Comparing to Existing Methods

Using conversion-based approximation as baseline, with bi-lexical DAG parsers and transition-based tree parsers.



UCCA bi-lexical DAG approximation.

# **Bi-lexical Graph Approximation**



### Evaluation

![](_page_67_Figure_2.jpeg)

- In the second second
- ② Calculate precision, recall and F1 scores.
- 8 Repeat for remote edges.

### **Evaluation**

![](_page_68_Figure_2.jpeg)

- Match primary edges between the graphs by terminal yield and label.
- Calculate **precision**, recall and **F1** scores. 2
- Repeat for remote edges. 3

PrimaryRemotePRF1
$$\frac{6}{9} = 67\%$$
 $\frac{6}{10} = 60\%$  $64\%$ Daniel HershcovichFebruary 5, 201920/33

### Results

 $\mathsf{TUPA}_{\mathsf{BiLSTM}}$  outperforms all other methods on the English Wiki test set:

|             | English Wiki |        |  |  |
|-------------|--------------|--------|--|--|
|             | Primary      | Remote |  |  |
|             | F1           | F1     |  |  |
| TUPA        |              |        |  |  |
| Sparse      | 64.1         | 16     |  |  |
| MLP         | 64.9         | 16.9   |  |  |
| BiLSTM      | 73.2         | 46.8   |  |  |
| Baselines   |              |        |  |  |
| DAGParser   | 58.6         | 1      |  |  |
| TurboParser | 51.2         | 3.7    |  |  |
| MaltParser  | 60.2         |        |  |  |
| StackLSTM   | 69.9         |        |  |  |
| UPARSE      | 61.1         |        |  |  |

#### Results

#### ...and also on the out-of-domain English 20K:

|             | Englis  | h Wiki | English 20K |        |  |
|-------------|---------|--------|-------------|--------|--|
|             | Primary | Remote | Primary     | Remote |  |
|             | F1      | F1     | F1          | F1     |  |
| TUPA        |         |        |             |        |  |
| Sparse      | 64.1    | 16     | 59.8        | 11.5   |  |
| MLP         | 64.9    | 16.9   | 62.5        | 9.7    |  |
| BiLSTM      | 73.2    | 46.8   | 67.9        | 23.0   |  |
| Baselines   |         |        |             |        |  |
| DAGParser   | 58.6    | 1      | 53.4        |        |  |
| TurboParser | 51.2    | 3.7    | 43.1        | 0.8    |  |
| MaltParser  | 60.2    |        | 55.3        |        |  |
| StackLSTM   | 69.9    |        | 63.5        |        |  |
| UPARSE      | 61.1    |        | 52.8        |        |  |

## Results

|                                            | Englis  | English Wiki   Eng |         | English 20K |         | French 20K |         | German 20K |  |
|--------------------------------------------|---------|--------------------|---------|-------------|---------|------------|---------|------------|--|
|                                            | Primary | Remote             | Primary | Remote      | Primary | Remote     | Primary | Remote     |  |
|                                            | F1      | F1                 | F1      | F1          | F1      | F1         | F1      | F1         |  |
| TUPA                                       |         |                    |         |             |         |            |         |            |  |
| Sparse                                     | 64.1    | 16                 | 59.8    | 11.5        |         |            |         |            |  |
| MLP                                        | 64.9    | 16.9               | 62.5    | 9.7         |         |            |         |            |  |
| BiLSTM                                     | 73.2    | 46.8               | 67.9    | 23.0        | 44.0    | 3.8        | 73.9    | 47.2       |  |
| Baselines                                  |         |                    |         |             |         |            |         |            |  |
| DAGParser                                  | 58.6    | 1                  | 53.4    |             |         |            |         |            |  |
| TurboParser                                | 51.2    | 3.7                | 43.1    | 0.8         |         |            |         |            |  |
| MaltParser                                 | 60.2    |                    | 55.3    |             |         |            |         |            |  |
| StackLSTM                                  | 69.9    |                    | 63.5    |             |         |            |         |            |  |
| UPARSE                                     | 61.1    |                    | 52.8    |             |         |            |         |            |  |
| うつ 山 (山) (山) (山) (山) (山) (山) (山) (山) (山) ( |         |                    |         |             |         |            |         |            |  |
### Interim Summary

- Structured meaning representation benefits language understanding.
- UCCA's semantic distinctions require a graph structure including non-terminals, reentrancy and discontinuity.
- TUPA is an accurate transition-based UCCA parser, and the first to support UCCA and any DAG over the text tokens.
- Outperforms strong conversion-based baselines.

## Interim Summary

- Structured meaning representation benefits language understanding.
- UCCA's semantic distinctions require a graph structure including non-terminals, reentrancy and discontinuity.
- TUPA is an accurate transition-based UCCA parser, and the first to support UCCA and any DAG over the text tokens.
- Outperforms strong conversion-based baselines.

Up next:

- Parsing other semantic representations.
- Comparing representations through conversion.

## Outline

Background: The UCCA Semantic Representation Scheme

2 A Transition-Based DAG Parser for UCCA (ACL'17)

### 3 Multitask Parsing across Semantic Representations (ACL'18)

 Content Differences between Syntactic and Semantic Representations (under submission)









Multitask Parsing across Semantic Representations (ACL'18)

## Syntactic Representations

### **UD** (Universal Dependencies)



### Data

#### UCCA training data is scarce



### Data

#### UCCA training data is scarce



### Conversion



# Multitask



-

Image: A mathematical states and a mathem

### Multitask



# Results

| F                        | Primary F1 | Remote F1 |  |  |  |  |  |  |  |  |
|--------------------------|------------|-----------|--|--|--|--|--|--|--|--|
| English Wiki (in-domain) |            |           |  |  |  |  |  |  |  |  |
| Single-task              | 73.2       | 46.8      |  |  |  |  |  |  |  |  |
| +AMR                     | 72.7       | 52.7      |  |  |  |  |  |  |  |  |
| +DM                      | 74.0       | 53.8      |  |  |  |  |  |  |  |  |
| +UD                      | 72.2       | 48.0      |  |  |  |  |  |  |  |  |
| +AMR+DM                  | 73.6       | 48.5      |  |  |  |  |  |  |  |  |
| +AMR+UD                  | 73.3       | 51.2      |  |  |  |  |  |  |  |  |
| +DM+UD                   | 73.9       | 52.2      |  |  |  |  |  |  |  |  |
| All                      | 73.8       | 52.1      |  |  |  |  |  |  |  |  |

・ロト ・ 日 ト ・ 目 ト ・

# Results

|                    | Primary F1   | Remote F1 |             | Primary F1                  |      |  |  |  |  |  |
|--------------------|--------------|-----------|-------------|-----------------------------|------|--|--|--|--|--|
| <b>English Wil</b> | ki (in-domai | in)       | English 20K | English 20K (out-of-domain) |      |  |  |  |  |  |
| Single-task        | 73.2         | 46.8      | Single-task | 67.9                        | 23.0 |  |  |  |  |  |
| +AMR               | 72.7         | 52.7      | +AMR        | 67.0                        | 31.2 |  |  |  |  |  |
| +DM                | 74.0         | 53.8      | +DM         | 69.1                        | 27.5 |  |  |  |  |  |
| +UD                | 72.2         | 48.0      | +UD         | 67.4                        | 23.9 |  |  |  |  |  |
| +AMR+DM            | 73.6         | 48.5      | +AMR+DM     | 68.9                        | 25.4 |  |  |  |  |  |
| +AMR+UD            | 73.3         | 51.2      | +AMR+UD     | 68.2                        | 31.4 |  |  |  |  |  |
| +DM+UD             | 73.9         | 52.2      | +DM+UD      | 68.6                        | 29.1 |  |  |  |  |  |
| All                | 73.8         | 52.1      | All         | 69.1                        | 25.8 |  |  |  |  |  |

イロト イヨト イヨト イ

# Results

|                    | Primary F1   | Remote F1 |                             | Primary F1 | Remote F1 |  |  |  |  |
|--------------------|--------------|-----------|-----------------------------|------------|-----------|--|--|--|--|
| <b>English Wil</b> | ki (in-domai | in)       | English 20K (out-of-domain) |            |           |  |  |  |  |
| Single-task        | 73.2         | 46.8      | Single-task                 | 67.9       | 23.0      |  |  |  |  |
| +AMR               | 72.7         | 52.7      | +AMR                        | 67.0       | 31.2      |  |  |  |  |
| +DM                | 74.0         | 53.8      | +DM                         | 69.1       | 27.5      |  |  |  |  |
| +UD                | 72.2         | 48.0      | +UD                         | 67.4       | 23.9      |  |  |  |  |
| +AMR+DM            | 73.6         | 48.5      | +AMR+DM                     | 68.9       | 25.4      |  |  |  |  |
| +AMR+UD            | 73.3         | 51.2      | +AMR+UD                     | 68.2       | 31.4      |  |  |  |  |
| +DM+UD             | 73.9         | 52.2      | +DM+UD                      | 68.6       | 29.1      |  |  |  |  |
| All                | 73.8         | 52.1      | All                         | 69.1       | 25.8      |  |  |  |  |

|                        | Primary F1 | Remote F1 |  |  |  |  |  |  |
|------------------------|------------|-----------|--|--|--|--|--|--|
| French 20K (in-domain) |            |           |  |  |  |  |  |  |
| Single-task            | 44.0       | 3.8       |  |  |  |  |  |  |
| +UD                    | 49.6       | 1.6       |  |  |  |  |  |  |
| German 20K (in-domain) |            |           |  |  |  |  |  |  |
| Single-task            | 73.9       | 47.2      |  |  |  |  |  |  |
| +UD                    | 80.1       | 59.8      |  |  |  |  |  |  |

イロト イヨト イヨト イ



## Outline

Background: The UCCA Semantic Representation Scheme

2 A Transition-Based DAG Parser for UCCA (ACL'17)

#### 3 Multitask Parsing across Semantic Representations (ACL'18)

4 Content Differences between Syntactic and Semantic Representations (under submission)

### UCCA vs. UD



### UCCA vs. UD



### UCCA vs. UD



## Assimilating the Graph Structures



Image: Image:

### Assimilating the Graph Structures



Now we can evaluate by matching edges (UCCA unlabeled evaluation)

## Assimilating the Graph Structures



## Assimilating the Graph Structures



# Confusion Matrix

| _            | A   | С    | D      | E      | F   | G  | Н   | L   | Ν  | Р   | Q  | R   | S   | т   | Ø    |
|--------------|-----|------|--------|--------|-----|----|-----|-----|----|-----|----|-----|-----|-----|------|
| acl          | 8   | 2    |        | 101    | 2   |    | 103 | 1   |    | 4   |    |     | 1   |     | 49   |
| advmod       | 61  | 9    | 399    | 51     | 12  | 33 | 3   | 61  |    | ż   | 10 | 6   | 5   | 117 | 71   |
| amod         | 1   | 33   | 99     | 197    | 2   |    | 7   |     |    | 3   | 27 |     | 97  | 2   | 60   |
| appos<br>aux | T   | 10   | 96     | 0      | 285 |    | 5   |     |    |     | T  |     | 4   |     | 2    |
| case         | 1   | 5    | 2      | 14     | 34  |    |     | 48  | 6  | 1   | 1  | 489 | 50  |     | 75   |
| CC           | 78  |      | 1      |        |     |    | 8   | 305 | 11 |     | 1  | T   | 1   |     | 41   |
| compound     | 23  | 24   | 8      | 176    | 2   |    | 0   |     |    | 1   | 1  | 1   | 3   | 3   | 164  |
| conj         | 2   | 88   | 1      |        | 222 |    | 265 |     |    | 2   |    | 1   | 3   |     | 90   |
| cop          | 2   |      |        |        | 333 |    |     |     |    | 3   |    | T   | 24  |     | 3    |
| dep          | 2   |      |        |        |     |    |     |     |    |     |    | 1   |     |     | 0    |
| det          | 2   | 1    | 19     | 763    | 1   | 1  | 10  | 2   |    |     | 19 | 2   | 1   |     | 26   |
| aiscourse    |     | 1    |        |        | 22  | 0  | 13  | 3   |    |     |    |     | T   |     | 2    |
| iobj         | 19  |      |        |        |     |    |     |     |    |     |    |     |     |     | -    |
| list         |     | 2    | 2      |        | 106 | 1  | 8   | 124 | 1  |     |    | F.2 | 1   | 1   | 2    |
| nmod         | 100 | 1    | 3<br>1 | 233    | 100 | T  | 6   | 134 | T  |     |    | 55  | 3   | 4   | 110  |
| nsubj        | 993 |      |        |        | 14  |    | Ž   | 9   |    | 3   |    | 24  | Ĩ   |     | 37   |
| nummod       | 4   | 7    | Б      | 6<br>1 | 1   |    | 3   | 1   |    | 8   | 50 | 6   |     | Л   | 24   |
| obl          | 247 | 1    | 21     | 7      | 2   | 4  | 4   | 4   |    | 0   | 3  | 2   |     | 69  | 132  |
| orphan       | 1   |      |        | 1      |     | ~  | 70  |     |    | -   |    |     | ~   |     | 1    |
| parataxis    | 1   |      |        | 1      |     | 2  | 79  |     |    | 1   |    |     | 2   |     | 39   |
| xcomp        | 44  | 1    | 2      | 2      |     | 5  | 1   |     |    | 5   |    |     | 7   |     | 116  |
| head -       | 125 | 1402 | 152    | 37     | 91  | 18 | 652 | 2   | 1  | 961 | 18 | 9   | 353 | 1   | 524  |
| Ŵ            | 329 | 172  | 34     | 56     | 0   | 5  | 400 | 29  |    | 141 | 27 | . ( | 98  | 11  | = na |

### Scenes and non-Scenes, Relations and Participants



### Scenes and non-Scenes, Relations and Participants



### Scenes and non-Scenes, Relations and Participants



## Multi-word Expressions



## Multi-word Expressions



## Multi-word Expressions



### Linkage between Scenes



< 一型

### Linkage between Scenes



< 一型

## Conclusion

• Meaning representation is valuable for language understanding.

## Conclusion

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Multitask learning allows useful shared generalizations to emerge.

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Multitask learning allows useful shared generalizations to emerge.
- Divergences limit inter-scheme gain, but highlight relative strengths.

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Multitask learning allows useful shared generalizations to emerge.
- Divergences limit inter-scheme gain, but highlight relative strengths.

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Multitask learning allows useful shared generalizations to emerge.
- Divergences limit inter-scheme gain, but highlight relative strengths.

Ongoing work:

• Complement syntax with *lexical* semantics to make up for differences.

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Multitask learning allows useful shared generalizations to emerge.
- Divergences limit inter-scheme gain, but highlight relative strengths.

Ongoing work:

- Complement syntax with *lexical* semantics to make up for differences.
- Establish cross-framework meaning representation parsing as a task.

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Multitask learning allows useful shared generalizations to emerge.
- Divergences limit inter-scheme gain, but highlight relative strengths.

Ongoing work:

- Complement syntax with *lexical* semantics to make up for differences.
- Establish cross-framework meaning representation parsing as a task.

Long term goal: learning semantic parsing as a means to learn language.

#### References I



#### Abend, O. and Rappoport, A. (2013).

```
Universal Conceptual Cognitive Annotation (UCCA).
In Proc. of ACL, pages 228–238.
```



Birch, A., Abend, O., Bojar, O., and Haddow, B. (2016).

HUME: Human UCCA-based evaluation of machine translation. In *Proc. of EMNLP*, pages 1264–1274.



Choshen, L. and Abend, O. (2018).

Reference-less measure of faithfulness for grammatical error correction. In *Proc. of NAACL-HLT*.



Sulem, E., Abend, O., and Rappoport, A. (2015).

Conceptual annotations preserve structure across translations: A French-English case study. In Proc. of S2MT, pages 11–22.



Sulem, E., Abend, O., and Rappoport, A. (2018a).

Semantic structural annotation for text simplification. In *Proc. of NAACL*.

Sulem, E., Abend, O., and Rappoport, A. (2018b).

Simple and effective text simplification using semantic and neural methods. In Proc. of ACL.