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Machine translation:
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↓
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Sequence-to-sequence sometimes works, but lacks inductive bias.

. . .

. . .
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Linguistic Structured Representations

Model explicit relations between words or concepts.

Example: syntactic/semantic bi-lexical dependencies.

After graduation , John moved to Copenhagen
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Semantic Representations

Abstract away from detail that does not affect meaning:

rest ≈ take a break

graduation ≈ םידומילהתאםייס
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Semantic Representations

UCCA
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Background: The UCCA Semantic Representation Scheme

Outline

1 Background: The UCCA Semantic Representation Scheme

2 A Transition-Based DAG Parser for UCCA (ACL’17)

3 Multitask Parsing across Semantic Representations (ACL’18)

4 Content Differences between Syntactic and Semantic Representations
(under submission)

Daniel Hershcovich February 5, 2019 6 / 39



Background: The UCCA Semantic Representation Scheme

Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena.
[Abend and Rappoport, 2013]

Cross-linguistically applicable and stable
[Sulem et al., 2015].
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Background: The UCCA Semantic Representation Scheme

UCCA Applications

Semantics-based evaluation of
Machine translation [Birch et al., 2016].
Text simplification [Sulem et al., 2018a].
Grammatical error correction [Choshen and Abend, 2018].

Sentence splitting for text simplification [Sulem et al., 2018b].

johnforappleangveHe

appleanJohngaveHe
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Background: The UCCA Semantic Representation Scheme

Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges.
Text tokens are terminals, complex units are non-terminal nodes.

Phrases may be discontinuous. Remote edges enable reentrancy.
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Background: The UCCA Semantic Representation Scheme

Structural Properties
(1) non-terminal nodes
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Background: The UCCA Semantic Representation Scheme

UCCA Data

English Wikipedia articles (Wiki).
English-French-German parallel corpus from
Twenty Thousand Leagues Under the Sea (20K).
Reviews from the English Web Treebank (EWT).
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Background: The UCCA Semantic Representation Scheme

Data Statistics

Wiki 20K EWT

en en fr de en

# sentences 5,141 492 492 6,514 3,520

# tokens 158,739 12,638 13,021 144,529 51,042

# non-terminal nodes 62,002 4,699 5,110 51,934 18,156

% discontinuous 1.71 3.19 4.64 8.87 3.87

% reentrant 1.84 0.89 0.65 0.31 0.83

# edges 208,937 16,803 17,520 187,533 60,739

% primary 97.40 96.79 97.02 97.32 97.32

% remote 2.60 3.21 2.98 2.68 2.68
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Transition-based UCCA Parser

Outline

1 Background: The UCCA Semantic Representation Scheme

2 A Transition-Based DAG Parser for UCCA (ACL’17)

3 Multitask Parsing across Semantic Representations (ACL’18)

4 Content Differences between Syntactic and Semantic Representations
(under submission)
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Transition-based UCCA Parser

TUPA: Transition-based UCCA Parser

Parses text w1 . . . wn to graph G incrementally by applying transitions to
the parser state, consisting of: stack, buffer and constructed graph.

Initial state:
stack buffer

They thought about taking a short break

TUPA transitions:
{Shift, Reduce, NodeX , Left-EdgeX , Right-EdgeX ,

Left-RemoteX , Right-RemoteX , Swap, Finish}

These transitions enable non-terminal nodes, reentrancy and discontinuity.
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Transition-based UCCA Parser

Example: TUPA Transition Sequence
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stack buffer
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Transition-based UCCA Parser

Example: TUPA Transition Sequence

⇒ Swap
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Transition-based UCCA Parser

Example: TUPA Transition Sequence
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Transition-based UCCA Parser

Example: TUPA Transition Sequence
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Transition-based UCCA Parser
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Transition-based UCCA Parser

Training

An oracle provides the transition sequence given the correct graph:
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Shift, Right-EdgeF , Reduce, Shift, Swap, Right-EdgeD , Reduce, Swap,
Right-EdgeA, Reduce, Reduce, Shift, Reduce, Shift, Right-EdgeC , Finish
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Transition-based UCCA Parser

TUPA Model

Learns to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features.
MLP Word embeddings + MLP.
BiLSTM Word embeddings + bidirectional RNN + MLP.

Features include:
{words, parts of speech, syntactic dependencies, existing edge labels}
from the stack and buffer + parents, children, grandchildren.
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Transition-based UCCA Parser
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Transition-based UCCA Parser

Comparing to Existing Methods

Using conversion-based approximation as baseline,
with bi-lexical DAG parsers and transition-based tree parsers.

They thought about taking a short break
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Transition-based UCCA Parser

Bi-lexical Graph Approximation

1 Convert UCCA to bi-lexical DAGs.
2 Train bi-lexical parsers.
3 Parse test set.
4 Convert to UCCA.
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Transition-based UCCA Parser

Evaluation

True (human-annotated) graph
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1 Match primary edges between the graphs by terminal yield and label.
2 Calculate precision, recall and F1 scores.
3 Repeat for remote edges.
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6
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1
2 = 50% 1
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Transition-based UCCA Parser

Results

TUPABiLSTM outperforms all other methods on the English Wiki test set:

…and also on the out-of-domain English 20K:

English Wiki
Primary Remote

F1 F1

TUPA
Sparse 64.1 16
MLP 64.9 16.9
BiLSTM 73.2 46.8
Baselines

DAGParser 58.6 1
TurboParser 51.2 3.7
MaltParser 60.2
StackLSTM 69.9
UPARSE 61.1

English 20K
Primary Remote

F1 F1

59.8 11.5
62.5 9.7
67.9 23.0

53.4
43.1 0.8
55.3
63.5
52.8

French 20K
Primary Remote

F1 F1

44.0 3.8

German 20K
Primary Remote

F1 F1

73.9 47.2
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Transition-based UCCA Parser

Interim Summary

Structured meaning representation benefits language understanding.
UCCA’s semantic distinctions require a graph structure including
non-terminals, reentrancy and discontinuity.
TUPA is an accurate transition-based UCCA parser, and the first to
support UCCA and any DAG over the text tokens.
Outperforms strong conversion-based baselines.

Up next:
Parsing other semantic representations.
Comparing representations through conversion.
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Multitask Parsing across Semantic Representations (ACL’18)

Outline

1 Background: The UCCA Semantic Representation Scheme

2 A Transition-Based DAG Parser for UCCA (ACL’17)

3 Multitask Parsing across Semantic Representations (ACL’18)

4 Content Differences between Syntactic and Semantic Representations
(under submission)
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Multitask Parsing across Semantic Representations (ACL’18)

Semantic Representations
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Multitask Parsing across Semantic Representations (ACL’18)

Syntactic Representations

UD (Universal Dependencies)

After graduation , John moved to Copenhagen

case punct nsubj

obl

case

root
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Multitask Parsing across Semantic Representations (ACL’18)

Data

UCCA training data is scarce

(English)

UD
DM

AMR
UCCA

17,062 sentences
33,964 sentences

36,521 sentences
5,141 sentences

and domains are limited.

UCCA AMR DM UD
Wikipedia blogs news blogs
books news news

emails emails
reviews reviews

Q&A
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Multitask Parsing across Semantic Representations (ACL’18)

Conversion
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Multitask Parsing across Semantic Representations (ACL’18)

Multitask

{After

L

graduation

P

H

,

U

John

A

moved

P

to

R

Copenhagen

C

A

H

A nam
e

ARG0ARG2 time

nam
e

op1

op1

op1

Copenhagen John

person

move-01

city

name

after

name graduate-01

ARG0 After graduation , John moved to Copenhagen

top

ARG2

ARG1

ARG1 ARG1 ARG2

After graduation , John moved to Copenhagen

case punct nsubj

obl

case

root obl}

Multitask TUPA model:

Task-specific BiLSTM Shared BiLSTM

After graduation to Copenhagen…

MLP

Daniel Hershcovich February 5, 2019 28 / 39



Multitask Parsing across Semantic Representations (ACL’18)

Multitask

{After

L

graduation

P

H

,

U

John

A

moved

P

to

R

Copenhagen

C

A

H

A nam
e

ARG0ARG2 time

nam
e

op1

op1

op1

Copenhagen John

person

move-01

city

name

after

name graduate-01

ARG0 After graduation , John moved to Copenhagen

top

ARG2

ARG1

ARG1 ARG1 ARG2

After graduation , John moved to Copenhagen

case punct nsubj

obl

case

root obl}
Multitask TUPA model:

Task-specific BiLSTM Shared BiLSTM

After graduation to Copenhagen…

MLP

Daniel Hershcovich February 5, 2019 28 / 39



Multitask Parsing across Semantic Representations (ACL’18)

Results

Primary F1 Remote F1
English Wiki (in-domain)
Single-task 73.2 46.8
+AMR 72.7 52.7
+DM 74.0 53.8
+UD 72.2 48.0
+AMR+DM 73.6 48.5
+AMR+UD 73.3 51.2
+DM+UD 73.9 52.2
All 73.8 52.1

Primary F1 Remote F1
English 20K (out-of-domain)
Single-task 67.9 23.0
+AMR 67.0 31.2
+DM 69.1 27.5
+UD 67.4 23.9
+AMR+DM 68.9 25.4
+AMR+UD 68.2 31.4
+DM+UD 68.6 29.1
All 69.1 25.8

Primary F1 Remote F1
French 20K (in-domain)
Single-task 44.0 3.8
+UD 49.6 1.6
German 20K (in-domain)
Single-task 73.9 47.2
+UD 80.1 59.8
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Multitask Parsing across Semantic Representations (ACL’18)
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Content Differences in Syntactic and Semantic Representations

Outline

1 Background: The UCCA Semantic Representation Scheme

2 A Transition-Based DAG Parser for UCCA (ACL’17)

3 Multitask Parsing across Semantic Representations (ACL’18)

4 Content Differences between Syntactic and Semantic Representations
(under submission)
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Content Differences in Syntactic and Semantic Representations

UCCA vs. UD

Many formal differences.
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Content Differences in Syntactic and Semantic Representations

Assimilating the Graph Structures
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Content Differences in Syntactic and Semantic Representations

Confusion Matrix
A C D E F G H L N P Q R S T ∅

acl 8 101 2 15 1 49
advcl 2 2 103 1 4 97
advmod 61 9 399 51 12 33 3 61 2 10 6 5 117 71
amod 1 33 99 197 2 7 3 27 97 2 60
appos 1 10 8 5 1 4 10
aux 96 285 2
case 1 5 2 14 34 48 6 1 1 489 50 75
cc 1 305 71 1 1 11
ccomp 78 8 1 41
compound 23 24 8 176 2 1 1 1 3 3 164
conj 2 88 1 265 2 3 90
cop 333 3 1 24 3
csubj 2 8
dep 1
det 2 1 19 763 1 1 19 2 26
discourse 1 1 6 13 3 1 1
expl 22 2
iobj 19
list 2 8 2
mark 2 3 186 1 134 1 53 1 1 18
nmod 100 1 1 233 6 3 4 110
nsubj 993 14 2 9 3 24 1 37
nummod 4 7 6 3 50 24
obj 439 7 5 1 1 1 1 8 1 6 4 92
obl 247 1 21 7 2 4 4 4 3 2 69 132
orphan 1 1
parataxis 1 1 2 79 1 2 39
vocative 9 3
xcomp 44 1 2 2 1 5 7 116
head 125 1402 152 37 91 18 652 2 1 961 18 9 353 1 524
∅ 329 172 34 56 6 5 466 29 141 27 7 98 11
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Content Differences in Syntactic and Semantic Representations

Scenes and non-Scenes, Relations and Participants
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Content Differences in Syntactic and Semantic Representations

Multi-word Expressions
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Content Differences in Syntactic and Semantic Representations
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Conclusion

Meaning representation is valuable for language understanding.

TUPA, an accurate UCCA parser, is suited to many representations.
Multitask learning allows useful shared generalizations to emerge.
Divergences limit inter-scheme gain, but highlight relative strengths.

Ongoing work:
Complement syntax with lexical semantics to make up for differences.
Establish cross-framework meaning representation parsing as a task.

Long term goal: learning semantic parsing as a means to learn language.
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