
Universal Semantic Parsing with Neural
Networks

Thesis submitted for the degree of

“Doctor of Philosophy”

By
Daniel Hershcovich

Submitted to the Senate of the Hebrew University
February, 2019

Universal Semantic Parsing with Neural
Networks

Thesis submitted for the degree of

“Doctor of Philosophy”

By
Daniel Hershcovich

Submitted to the Senate of the Hebrew University
February, 2019

This work was carried out under the supervision of:
Prof. Ari Rappoport and Dr. Omri Abend

Acknowledgments

Even before I started my studies at the PhD program of the Edmond and Lily Safra
Center for Brain Sciences (then the Interdisciplinary Center for Neural Computation),
I was interested in human language in general and learning languages in particular, an
interest I found early on that I shared with who became my (first) PhD advisor, Ari
Rappoport, to whom I am grateful for the insightful conversations all along this process.
I am of course also indebted to my second advisor, Omri Abend, whose shared interests
with me and Ari have led to a fruitful research project, which is still ongoing and I
hope will continue for many years. They have set a very high standard, to which I
continuously strive and to which I surely owe much of my success so far. I also thank my
PhD committee members, Roi Reichart and Yoav Goldberg, whose invaluable advice has
shaped my research direction in the best way possible.

I sincerely appreciate the support of the ELSC staff and students, and particularly
the members of my year, Adar Adamsky, Jonathan Bain, Haran Shani, Matan Holtzer,
Henrike Horn, Adi Kol, Ori Lavi Rotbain, Nimrod Levin, Oren Peles, Pnina Rappel,
Benjamin Weiner, and Noga Zaslavsky, whose company since the early stages of my
graduate studies has given me a sense of belonging and comfort. I also thank the many
other friends I made during my studies, including Nora Vrieler, Ana Polterovich, Johannes
Niediek, Dan Valsky, Nova Fandina and Stav Yardeni, for their support.

My gratitude also goes to Roy Schwartz, who shared a great deal of his experience
with me and helped me become confident in my ideas, and to Elior Sulem, who has
accompanied me as a student in the lab and with whom I shared a considerable part of
my time there. I would also like to thank past and current lab members, including Oren
Tsur, Eva Kimel, Dana Rubinstein, Saggy Herman, Effi Levi, Leshem Choshen, Zohar
Aizenbud, Aviram Stern, Adi Bitan and Michal Kessler, who have made these few years
both pleasant and interesting. I must also express my gratitude towards Dotan Dvir
and the UCCA annotation team, without which this work would simply have not been
possible.

Finally, I owe my deepest gratitude to my family for their support along the way,
and to my partner Michal for her endless love, patience and understanding, which I value
greatly.

1

Abstract

A major scientific effort is dedicated to natural language understanding, which aims to be
able to comprehend text, reason about it, and act upon it in an intelligent way. While
specific use-cases or benchmarks can be solved with relatively simple systems, which
either ignore word order (“bag-of-words” models) or treat it as a simple linear structure
(such as the popular sequence-to-sequence framework allowing neural networks to learn
tasks in an end-to-end fashion), understanding human language in general requires a
hierarchical representation of meaning. Constructing this representation from text has
been the goal of an extensive line of work in semantic parsing. While many semantic
representation schemes have been proposed, they share many of their basic distinctions,
such as between predicates (relations, states and events) and arguments (participants).

This thesis focuses on a particular semantic representation scheme called Universal
Conceptual Cognitive Annotation (UCCA), whose main design principles are support for
all major linguistic semantic phenomena, cross-linguistic applicability, stability across
translations, ease of annotation (even by those who are not experts in linguistics), and
a modular architecture supporting multiple layers of semantic annotation. A fully au-
tomatic parser is presented, and evaluated on multiple languages (English, French and
German). The parser, titled “TUPA” (transition-based UCCA parser), is able to learn
very general graph structures: directed acyclic graphs over token sequences with non-
terminal nodes for complex units, where these may cover discontinuous terminal yields.
This general class of graphs covers the structures annotated in UCCA, as well as other rep-
resentation schemes. TUPA is implemented as a transition-based parser, whose transition
system supports these structural properties. Its transition classifier is a neural network
equipped with a bidirectional long short-term memory (BiLSTM) module for calculating
feature representations for the input. In an extensive comparison to conversion-based
methods, as well as other classifier implementations, TUPA is shown to outperform all
baselines in the task of UCCA parsing in both in-domain and out-of-domain settings in
three languages.

The parser is subsequently applied to two other semantic representation schemes, DM
and AMR, and to syntactic dependencies in the Universal Dependencies (UD) scheme.
This demonstrates that the flexible parser is usable not just for UCCA parsing. Further-
more, training TUPA in a multitask setting on all of these schemes improves its UCCA
parsing accuracy, by effectively learning generalizations across the different representa-
tions: a shared model is thus able to apply semantic distinctions in one task, which have
been learned for another.

Finally, in an empirical comparison of the content of semantic and syntactic represen-

2

tations, we discover several aspects of divergence, i.e., differences in the content captured
by these schemes. These have profound impact on the potential contribution of syntax
to semantic parsing, and on the usefulness of each of the approaches for semantic tasks
in natural language processing.

I see semantic parsing as a means for computers to learn language. While different
representations focus on different distinctions and do so with formally different structures,
they share an overall goal, which is to support natural language processing applications,
such as classifying text into categories, tagging it for linguistic properties, performing
inference and reasoning, and generating new text according to some constraints (e.g.,
machine translation). The combined datasets annotated in every representation are an
invaluable resource, which, used effectively, can greatly boost our achievements in lan-
guage understanding and processing.

3

Contents

1 Introduction 7
1.1 Semantic Representations . 9
1.2 Universal Conceptual Cognitive Annotation 11
1.3 UCCA Parsing . 15

2 Methodology 17
2.1 Transition-Based Parsing . 17
2.2 Neural Networks . 20
2.3 Multitask Learning . 23
2.4 Evaluation . 24

3 A Transition-Based Directed Acyclic Graph Parser for UCCA (Pub-
lished in ACL 2017) 26
3.1 Introduction . 27
3.2 The UCCA Scheme . 28
3.3 Transition-based UCCA Parsing . 29
3.4 Experimental Setup . 33
3.5 Results . 37
3.6 Related Work . 38
3.7 Conclusion . 39

4 Multitask Parsing Across Semantic Representations (Published in ACL
2018) 41
4.1 Introduction . 42
4.2 Related Work . 42
4.3 Tackled Parsing Tasks . 43
4.4 General Transition-based DAG Parser 45

4.4.1 TUPA’s Transition Set . 46
4.4.2 Transition Classifier . 46

4

4.5 Unified DAG Format . 48
4.6 Multitask Transition-based Parsing . 49
4.7 Experimental Setup . 50
4.8 Results . 53
4.9 Discussion . 54
4.10 Conclusion . 55

5 Universal Dependency Parsing with a General Transition-Based DAG
Parser (Published in CoNLL 2018 Shared Task) 59
5.1 Introduction . 60
5.2 Unified DAG Format . 61
5.3 General Transition-based DAG Parser 64

5.3.1 Transition Set . 65
5.3.2 Transition Classifier . 65
5.3.3 Constraints . 67

5.4 Training details . 68
5.4.1 Hyperparameters . 68
5.4.2 Small Treebanks . 68
5.4.3 Multilingual Model . 69
5.4.4 Out-of-domain Evaluation . 69

5.5 Results . 69
5.5.1 Evaluation on Enhanced Dependencies 70
5.5.2 Ablation Experiments . 70

5.6 Conclusion . 71

6 Content Differences in Syntactic and Semantic Representations (Pub-
lished in NAACL-HLT 2019) 74
6.1 Introduction . 75
6.2 Representations . 76
6.3 Shared Gold-standard Corpus . 78
6.4 Comparison Methodology . 79

6.4.1 Basic Conversion . 79
6.4.2 Extensions to the Converter . 80

6.5 Analysis of Divergences . 81
6.5.1 Confusion Matrix . 81
6.5.2 Scenes vs. Non-Scenes . 82
6.5.3 Primary and Secondary Relations 83
6.5.4 Multi-Word Expressions . 84

5

6.5.5 Linkage . 85
6.5.6 Other Differences . 86

6.6 Fine-Grained UCCA Parsing Evaluation 87
6.6.1 Experimental Setup . 87
6.6.2 Results . 87

6.7 Discussion . 89
6.8 Related Work . 89
6.9 Conclusion . 90

7 Discussion 91
7.1 Objectives . 91
7.2 Challenges . 92
7.3 Further Analysis . 92

7.3.1 Benefit of Multitask Learning . 92
7.4 Ongoing Work . 93

7.4.1 Combining Syntax with Lexical Semantics 93
7.4.2 Broad-coverage Semantic Parsing 96
7.4.3 Establishing the Meaning Representation Parsing Task 96

7.5 Conclusion . 97

A A Transition-Based Directed Acyclic Graph Parser for UCCA
Supplementary Notes 117
A.1 Feature Templates . 117
A.2 Extended Presentation of UCCA . 117
A.3 Hyperparameter Values . 118
A.4 Bilexical Graph Conversion . 119
A.5 Proof Sketch for Completeness of the TUPA Transition Set 120

B Multitask Parsing Across Semantic Representations
Supplementary Notes 124
B.1 Features . 124
B.2 Conversion to and from Unified DAG Format 125
B.3 Qualitative evaluation . 125

C Content Differences in Syntactic and Semantic Representation
Supplementary Material 127
C.1 UCCA Category Definitions . 127
C.2 Universal Dependencies Category Definitions 128

6

Chapter 1

Introduction

Natural language processing (NLP) or computational linguistics (CL) is a sub-field of
computer science with two main goals: (1) developing methods for performing linguistic
tasks automatically so that solutions can be engineered for better human-computer inter-
face or analysis of large amounts of natural language data; (2) computational modeling
and study of natural language to answer linguistic questions.

Applications in NLP include classifying text into categories (such as spam/non-spam,
by topic, by author properties, or by the sentiment expressed in it), tagging it for linguistic
properties (such as part-of-speech, i.e., noun/verb/etc.), building abstract representations
for it (for linguistic research or for more readily integrating them into downstream ap-
plications) and generating new text according to some constraints (for example, machine
translation is the task of generating text in a target language given source language text;
text simplification is the task of generating simple text with approximately the same
meaning as given complex text).

Semantic tasks in natural language processing, such as machine translation and senti-
ment analysis, require understanding the meaning of text. Since text is merely a sequence
of words, it has to be represented in a way that will convey its meaning. One simple ap-
proach, known as the bag-of-words model, looks only at which words occur in the text.
This can already provide substantial information about the meaning, but it ignores the
order of words, which clearly conveys important information as well. The n-gram model
counts sequences of words with regard to their order, incorporating at least some of the
meaning encoded in the text structure. Many models treat text as a simple linear struc-
ture, such as the popular sequence-to-sequence framework allowing neural networks to
learn tasks in an end-to-end fashion.

Specific use-cases or benchmarks can be solved with such relatively simple systems,
which either ignore word order or make simplifying assumptions about structure. How-
ever, understanding human language in general requires a hierarchical representation of

7

Glad I called before I arrived with my box to ship .

root

nsubj

ccomp mark

nsubj

advcl

case

nmod:poss

obl

mark

acl

punct

Figure 1.1: Example UD tree (reviews-372665-0003 from UD_English-EWT), demon-
strating practices common in semantic annotation: linking content words to content
words, and preference of lexical heads over functional ones.

meaning, as an undeniable part in the meaning of language resides in its hierarchical
structure.

Indeed, a major effort in NLP is dedicated to natural language understanding, which
aims to be able to comprehend text, reason about it, and act upon it in an intelligent
way. For example, executable semantic parsing1 is the task of generating logical meaning
representations in the form of code, such as SQL or Python, which can then be executed
against a knowledge base to perform tasks or answer questions. In general, constructing
a hierarchical representation from text has been the goal of an extensive line of work in
semantic parsing. While many semantic representation schemes have been proposed, they
share many of their basic distinctions (Abend and Rappoport, 2017), such as between
predicates (relations, states and events) and arguments (participants).

Syntax is a way to model this structure formally. Using syntactic features can im-
prove the performance in semantic tasks. However, syntactic annotations suffer from
limitations, since they do not represent the semantic structure of text directly. Simple
manipulations such as switching from an active construction to a passive one, which
nearly do not alter the meaning of text, can yield a significantly different syntactic struc-
ture. Moreover, the same syntactic construct can express conceptually distinct semantic
structures: while “chairmen of parliaments” and “dozens of parliaments” have the same
syntactic structure, semantically they are quite distinct.

Universal Dependencies (Nivre et al., 2016) is a syntactic dependency scheme aiming
for cross-lingual consistency, whose annotation is often similar to the common practice in
semantic treebanks (Figure 1.1). See Table C.2 for a concise description of UD relations.

1Two conceptually distinct tasks are termed semantic parsing: parsing into executable representa-
tions, such as SQL; and parsing into descriptive meaning representation, such as AMR or UCCA. We
disambiguate by referring to the former as executable semantic parsing.

8

1.1 Semantic Representations

As opposed to syntactic annotation, which reflects language-specific formal patterns,
semantic annotation corresponds to a higher level of cognitive processing, and the same
framework can potentially apply to any language. Moreover, a rich semantic annotation
scheme may be better than syntactic annotation as an input for applications that attempt
to solve a semantic task, due to their tighter relation to the meaning of the text. Ideally,
a semantic representation abstracts away from detail that does not affect meaning:

rest ≈ take a break
graduation ≈ םידומילהתאםייס

While syntactic description does not suffice to discern meaning from natural language,
some syntactic formalisms provide a theory of the syntax-semantics interface. Examples
include analyses using Head-driven Phrase Structure Grammar (HPSG; Pollard and Sag,
1994a), Combinatory Categorial Grammar (CCG; Steedman, 2000) and Tree-Adjoining
Grammars (TAG; Joshi and Schabes, 1997). They have been used as a basis for meaning
representation by defining compositional semantics on top of them: Flickinger (2000)
introduced the LinGO English Resource Grammer (ERG), a broad-coverage, linguistically
precise HPSG-based grammar of English, which is semantically grounded in Minimal
Recursion Semantics (MRS; Copestake et al., 2005), a form of flat semantic representation
capable of supporting underspecification.

Bos (2005, 2008, 2015) introduced the Boxer parser, which uses syntactic analysis in
the form of CCG derivations to compositionally derive Discourse Representation Struc-
tures. Discourse Representation Theory (DRT; Kamp and Reyle, 2013) is a general
framework for representing the meaning of sentences and discourse, which can handle
multiple linguistic phenomena including anaphora, presuppositions, and temporal expres-
sions. The basic meaning-carrying units in DRT are Discourse Representation Structures
(DRSs), which are recursive formal meaning structures that have a model-theoretic in-
terpretation and can be translated into first-order logic. Basic DRSs consist of discourse
referents representing entities in the discourse, and discourse conditions representing in-
formation about discourse referents.

In semantic role labeling (Baker et al., 1998; Palmer et al., 2005), predicates and their
arguments are annotated and classified into specific roles. While earlier work on semantic
parsing has mostly concentrated on shallow semantic analysis, focusing on semantic role
labeling of verbal argument structures, the focus has shifted to parsing of more elaborate
representations that account for a wider range of phenomena. Most closely related to my
work are Broad-Coverage Semantic Dependency Parsing (SDP) frameworks, such DM

9

While driving , I listen to podcasts

ARG2 ARG1

ARG1
top

ARG2

ARG1 ARG2

case punct nsubj

obl

case

root

obl

Figure 1.2: Top: syntactic dependencies in the Universal Dependencies framework. Bot-
tom: semantic dependencies in the DM (DELPH-IN MRS) framework.

(DELPH-IN MRS), converted from DeepBank (Flickinger et al., 2012), a corpus of hand-
corrected parses from LinGO ERG. It addresses a wide range of semantic phenomena,
and supports discontinuous units and multiple parents (Oepen et al., 2016). However,
SDP uses bi-lexical dependencies (meaning every relation or edge is between a pair of
words), disallowing non-terminal nodes (see below), and thus faces difficulties in sup-
porting structures that have no clear head, such as coordination (Ivanova et al., 2012).
Figure 1.2 example shows syntactic/semantic bi-lexical dependencies for the sentence
“While driving, I listen to podcasts”.

Another line of work addresses parsing into Abstract Meaning Representations (AMRs;
Banarescu et al., 2013; Flanigan et al., 2014; Vanderwende et al., 2015; Pust et al., 2015;
Artzi et al., 2015; Wang et al., 2015b, 2016, 2015a; Zhou et al., 2016; Damonte et al.,
2017; Damonte and Cohen, 2018). AMR represents a rich set of semantic distinctions in a
single homogeneous formalism, including named entity recognition and linking, semantic
role labeling, and (indirectly) coreference resolution. While sharing much of my work’s
motivation, AMR does not ground its units in the words and constituents of the text.
This complicates the parsing task, as it requires that the alignment between words and
logical symbols be automatically (and imprecisely) detected. Furthermore, it complicates
applications using the meaning representation, as it is not immediately clear what por-
tion of the text corresponds to what portion of the meaning representation, which may
be necessary for tasks such as rephrasing, translation or evaluation of parts of the text.

While many of the parsing approaches mentioned above rely on a theory of syntax-
semantics interface, on syntactic features or on syntactic pre-processing for semantic
parsing, some semantic annotation schemes and parsing approaches attempt to represent
the meaning of natural language utterances directly. While the parser presented in this
thesis does make use of syntactic features, it largely belongs to this category, as it makes

10

Copenhagento

R C

movedJohn

A

P

A

graduation

P

After

L H

H

A

ןגהנפוקלרבעןו'ג
A P

A

םידומילהתאםייסשירחא

P

F

D

H

L

H

A

Figure 1.3: Illustration for the cross-linguistic applicability of UCCA.

johnforappleangveHe

appleanJohngaveHe

Figure 1.4: UCCA for grammatical error correction evaluation.

no or minimal assumptions about the relation between the syntactic and the semantic
structures. This “purist” approach is attractive, as it avoids biases and language-specific
properties that might be introduced by using a specific syntactic framework.

1.2 Universal Conceptual Cognitive Annotation

Universal Cognitive Conceptual Annotation (UCCA; Abend and Rappoport, 2013) is
a cross-linguistically applicable semantic representation scheme. It covers the predicate-
argument structures evoked by predicates of all grammatical categories, the inter-relations
between them, as well as other major linguistic phenomena. UCCA has demonstrated
applicability to multiple languages, rapid annotation (Abend et al., 2017), and benefit for
various applications: evaluation of machine translation (Birch et al., 2016), evaluation of
grammatical error correction (Choshen and Abend, 2018), as demonstrated in Figure 1.4,
evaluation of structural text simplification (Sulem et al., 2018a) and text simplification
(Sulem et al., 2018b).

UCCA is a typologically-motivated scheme for analyzing abstract semantic structures

11

Wiki 20K EWT
en en fr de en

sentences 5,141 492 492 6,514 3,520
tokens 158,739 12,638 13,021 144,529 51,042
non-terminal nodes 62,002 4,699 5,110 51,934 18,156
% discontinuous 1.71 3.19 4.64 8.87 3.87
% reentrant 1.84 0.89 0.65 0.31 0.83
edges 208,937 16,803 17,520 187,533 60,739
% primary 97.40 96.79 97.02 97.32 97.32
% remote 2.60 3.21 2.98 2.68 2.68

Table 1.1: UCCA data statistics.

in text. It aims to abstract away from grammatical particularities of a passage such that
paraphrases, and translations tend to have similar UCCA structures. Accordingly, UCCA
has been studied with respect to meaning preservation in translation (Sulem et al., 2015),
and found to be more stable than phrase-structure syntactic annotation. UCCA corpora
are available for English, French and German, and pilot studies were conducted on a
few languages more.2 In English, data was annotated from Wikipedia, the book Twenty
Thousand Leagues under the Sea, and the English Web Treebank Web Reviews corpus
(see Table 1.1).

IMPLICIT

A

Glad
S

I A called

P

A
H before

L

I

A

arrived
P

with

R

my
S

E

box to
F

ship
P

.
U

E

A

H

A
C

Figure 1.5: UCCA example including an implicit node, where the subject of “Glad” is
omitted.

Formally, UCCA structures are directed acyclic graphs (DAGs) whose nodes (or units)
correspond to (are anchored by) words, or elements viewed as a single entity according to
some semantic or cognitive consideration. Edges are labeled with categories, indicating
the role of a child in the relation the parent represents. See Table C.1 for a concise
description of UCCA categories. A Scene is UCCA’s notion of an event or a frame, and
is a description of a movement, an action or a state which persists in time. Every Scene
contains one primary relation, which can be either a Process or a State. Scenes may

2https://github.com/UniversalConceptualCognitiveAnnotation

12

https://github.com/UniversalConceptualCognitiveAnnotation

contain any number of Participants, a category which also includes abstract participants
and locations. They may also contain temporal relations (Time), and secondary relations
(Adverbials), which cover semantic distinctions such as manner, modality and aspect.
UCCA also supports implicit units which do not correspond to any tokens, such as
the implicit semantic subject of “Glad” in Figure 1.5. The principal kind of unit is a
scene denoting a situation mentioned in the sentence, typically involving a scene-evoking
predicate, participants, and (perhaps) modifiers.

Scenes may be linked to one another in several ways. First, a Scene can provide
information about some entity, in which case it is marked as an Elaborator. This often
occurs in the case of participles or relative clauses. For example, “(child) who went to
school” is an Elaborator Scene in “The child who went to school is John”. A Scene
may also be a Participant in another Scene. For example, “John went to school” in the
sentence: “He said John went to school”. In other cases, Scenes are annotated as Parallel
Scenes (H), which are flat structures and may include a Linker (L), as in: “WhenL [he
arrives]H , [he will call them]H”.

Non-Scene units are headed by units of the category Center, denoting the type of entity
or thing described by the whole unit. Elements in non-Scene units include Quantifiers
(such as “dozens of people”) and Connectors (mostly coordinating conjunctions). Other
modifiers to the Center are marked as Elaborators.

Figure 1.5 contains five scenes: one anchored by the State Glad; one anchored by the
Process called; one anchored by the Process arrived; one anchored by the Process ship;
and one anchored by the possessive pronoun my, which indicates a stative possession re-
lation. A Participant (A) of a scene is typically an entity or location involved. Adverbials
(D) modify scenes with respect to properties like negation, modality, causativity, direc-
tion, manner, etc., which do not constitute an independent situation or entity. Temporal
modifiers are labeled Time (T).

A scene can serve as a Participant within a larger scene: Figure 1.5 embeds the
“called” scene within the “Glad” scene. A scene can also serve as an Elaborator of a
non-scene unit: “my” and “to ship” in Figure 1.5 are both Elaborators of “box”. Other
relations between scenes are called parallel linkage: a unit consists of Parallel Scenes
(H) and possibly Linkers (L) describing how they are related. This is seen at the top level
of Figure 1.5, where the “Glad” and “arrived” scenes are parallel and the word “before”
is a linker.

Other categories only apply under non-scene units, i.e., units with no predicate:
a semantic head–the Center (C); modifiers of Quantity (Q); and other modifiers, called
Elaborators (E). A Connector (N) groups together multiple non-scene units into a larger
unit, e.g., “You and I” in Figure 1.6a.

13

You

C

and
N

I

C

A

will
D

change
P

the
F

world
C

A

(a)

George

A

called

the
F

meeting

C
off

P

A

(b)

Figure 1.6: UCCA examples. (a) includes a coordination construction (“You and I”).
(b) includes a discontinuous unit (“called ... off”).

Apart from the main semantic content of scenes, participants, and connectives, UCCA
provides the categories: Relator (R) for grammatical markers expressing how a unit re-
lates to its parent unit–in English, these are mainly prepositions and the possessive ’s;
Function (F) for other grammatical markers with minimal semantic content, such as
tense auxiliaries, light verbs, and articles; and Ground (G) for expressions expressing
speaker perspective outside the propositional structure of the sentence. The least con-
tentful elements–Fs, and to a lesser extent Rs–are subject to considerable variation when
paraphrasing or translating a sentence. Punctuation tokens are attached to units as U,
but are generally also regarded as non-content-bearing.

Note that in Figure 1.6b, the tokens of the unit called off do not receive individual
labels: this is called an unanalyzable unit, and is used for semantically opaque multi-
word expressions.

Everything

A

is
F

delicous

S

H

and
L

cooked

P

perfectly
D

.

U

H

A

Figure 1.7: UCCA example including a remote edge (dashed), resulting in “Everything”
having two parents.

The solid edges in the UCCA graphs are called primary edges: the primary edges in
UCCA always form a tree. Remote edges, such as the dotted edge from the possession
scene unit to “box” in Figure 1.5 and the dotted A edge to “Everything” in Figure 1.7,
allow for additional relations, forming a DAG: multiple parents are enabled exclusively
by remote edges. Remote edges are commonly used with attributive possessives and

14

adjectives, and relative clauses, where the head of the noun phrase doubles as a semantic
participant of the modifier scene. They also figure in multi-scene control constructions
(John told Mary to leave: Mary is a primary participant of the telling scene and a remote
participant of the leaving scene).

1.3 UCCA Parsing

In order to represent the full range of semantic structures exhibited by natural language,
three properties should be supported: reentrancy, representing arguments shared between
predicates; non-terminal nodes for multi-word units; and discontinuity of semantic units
in the text.

The first property, reentrancy (or multiple parents), is required for represent-
ing arguments and relations (semantic units) that are shared between predicates. For
instance, in the sentence “Everything is delicious and cooked perfectly” (Figure 1.7),
“Everything” is an argument of both “delicious” and “cooked perfectly”, yielding a DAG
structure rather than a tree.

The second is non-terminal nodes for representing units comprising more than one
word (Figure 1.6a). While bi-lexical dependencies partially circumvent this requirement,
by representing complex units in terms of their headwords, they fall short when repre-
senting units that have no clear head. Frequent examples of such constructions include
coordination structures (e.g., “You and I will change the world”), some multi-word ex-
pressions (e.g., “The Haves and the Have Nots”), and prepositional phrases. In these
cases, dependency schemes often apply some annotation convention that selects one of
the sub-units as the head, but as different head selections are needed for different pur-
poses, standardization problems arise (Ivanova et al., 2012). For example, selecting the
preposition to head prepositional phrases yields better parsing results (Schwartz et al.,
2012), while the head noun can be more useful for information extraction purposes.

Third, semantic units may be discontinuous in the text. For instance, in “George
called the meeting off ” (Figure 1.6b), the phrasal verb “called ... off” forms a sin-
gle semantic unit. Discontinuities are also pervasive with other multi-word expressions
(Schneider et al., 2014).

The only semantic annotation scheme that has units anchored in the text and supports
the combination of these criteria is UCCA, for which no parser has existed prior to the
work presented here. This thesis is concerned with learning to parse UCCA graphs from
text, representing its semantics. A general transition-based graph parser is introduced
(see Section 2.1), and the relationship with other representations is investigated to find
beneficial commonalities and differences highlighting the potential utility of semantic

15

parsers for text understanding applications. The analysis also exposes challenges semantic
parsers must address, and potential sources for improvement.

This thesis has the following goals: developing techniques for general graph parsing,
and specifically, devising a method for automatic prediction of UCCA structure given
plain text; investigating and quantifying the relationship between the content captured
in UCCA and other semantic or syntactic representations; and taking advantage of the
similarities to other schemes, to improve UCCA parsing by learning common distinctions.

An automatic UCCA parser will allow large-scale annotation of text for meaning rep-
resentation, in turn allowing addressing various scientific questions in semantics, such
as regarding compositionality of meaning and cross-lingual divergences. It is also useful
from an engineering perspective, allowing fully automatic evaluation of machine transla-
tion, grammatical error correction and text simplification, for example, as demonstrated
in works cited in Section 1.2; as well as serving as an infrastructure for feature extraction
and calculation of neural representation for natural language processing and understand-
ing (see Section 2.2).

An extensive comparison and integration of meaning representation schemes is im-
portant for several reasons. Learning architectures that utilize complementary knowledge
sources (e.g., via parameter sharing) are effective in that they take advantage of more
annotated data and save annotation efforts. Learning from multiple flavors of meaning
representation in tandem has hardly been explored, but it provides complementary views
of the semantics of natural language, as well as regularization preventing overfitting to
particular annotation choices or domains. Cross-framework parsing reduces framework-
specific segregation in the field of meaning representation parsing, and is a step towards
a unifying formal model over different semantic graph banks, uniform representations
and scoring, systematic contrastive evaluation across frameworks, and increased cross-
fertilization via transfer and multi-task learning (see Section 4.6).

16

Chapter 2

Methodology

2.1 Transition-Based Parsing

Various parsing methods have been used for various frameworks, depending on their for-
mal properties. For bi-lexical dependency trees, which have become the most commonly
used formalism for syntactic structure representation (Universal Dependencies, for exam-
ple, is a multilingual bi-lexical syntactic dependency tree framework), the main parsing
approaches can be characterized as graph-based and transition-based.

Transition-based parsers (Nivre, 2003, 2008) build trees or graphs as they scan the
text incrementally. The parse is created by applying a transition at each step to the
parser state, defined using a buffer of tokens and nodes to be processed, a stack of
nodes currently being processed, and a graph of constructed nodes and labeled edges. A
classifier is used at each step to select the next transition based on features that encode
the parser’s current state. During training, an oracle creates training instances for the
classifier, based on the gold-standard annotation. Transition-based parsers are also called
shift-reduce parsers, as the most common transitions include Shift, moving a node from
the buffer to the stack, and Reduce (-left/-right), possibly attaching nodes and removing
them from the stack.

Despite being based on local decisions, transition-based methods have yielded ex-
cellent results in a variety of parsing tasks. In fact, the transition-based approach has
produced some of the best results in syntactic dependency parsing (Dyer et al., 2015;
Ballesteros et al., 2015; Kiperwasser and Goldberg, 2016; Andor et al., 2016), including
non-projective dependency parsing (Nivre, 2009; Kuhlmann and Nivre, 2010; Bohnet and
Nivre, 2012). Transition-based parsers have also demonstrated strong performance in a
variety of other semantic and syntactic settings. Within syntactic dependency parsing,
transition-based methods have been successfully applied to corpora in many languages
and domains, including Universal Dependencies (Straka et al., 2016; Straka and Straková,

17

They

A

thought

P

about

R

taking

F

a

F

short break

C

P

A

A D

Figure 2.1: UCCA graph for the sentences “They thought about taking a short break”.

2017; de Lhoneux et al., 2017). The approach has also yielded results comparable with
the state-of-the-art when applied to constituency parsing (Sagae and Lavie, 2005; Zhang
and Clark, 2009; Zhu et al., 2013), and has been extended to discontinuous constituency
parsing (Maier, 2015; Maier and Lichte, 2016) yielding improvements in the parsing of
discontiguous constituents in German. Transition-based parsers have also been developed
for dependency DAG structures (Sagae and Tsujii, 2008; Tokgöz and Eryiğit, 2015) and
CCG parsing (Ambati et al., 2015).

The parser presented in this thesis, TUPA, combines techniques from transition-based
discontiguous constituency parsing (Maier, 2015) and transition-based dependency DAG
parsing (Tokgöz and Eryiğit, 2015). Transition-based methods are a natural starting
point for UCCA parsing, as the set of distinctions it represents is similar in spirit to the
distinctions conveyed by dependency schemes.

Wang et al. (2015b,a, 2016); Goodman et al. (2016); Wang and Xue (2017) presented
a transition-based AMR parser, which requires a syntactic dependency tree as input.
It operates on the input tree, transforming it into an AMR graph by a sequence of
transitions. The accuracy of the underlying syntactic dependency parser is important, as
shown by Wang et al. (2015a), who achieved the best results using the Charniak parser
trained on a much larger and more diverse dataset–the full OntoNotes corpus, rather than
the Stanford parser trained on the Penn TreeBank. Some transition-based AMR parsers
parse to AMR directly, without going through a dependency tree (Zhou et al., 2016;
Ballesteros and Al-Onaizan, 2017; Damonte et al., 2017; Damonte and Cohen, 2018).
Their transition systems are in principle similar to TUPA and support reentrancies, but
are tailored to AMR parsing and rely on alignments between concepts and text tokens.

The set of transitions implemented by TUPA is:
{Shift, Reduce, NodeX, Left-EdgeX, Right-EdgeX, Left-RemoteX, Right-

RemoteX, Swap, Finish}
These transitions enable non-terminal nodes, reentrancy and discontinuity. To parse

18

stack buffer
They thought about taking a short break

Figure 2.2: Initial state for parsing the sentence from Figure 2.1.

Shift
They thought about taking a short break

They thought

about

taking a short break

Right-EdgeA
They thought about taking a short break

They

A

thought

about

taking a short break

Shift
They thought about taking a short break

They

A

thought

about

taking a short break

Swap
Theythought about taking a short break

They

A

thought

about

taking a short break

Right-EdgeP
Theythought about taking a short break

They

A

thought

about

taking a short break

Reduce
They about taking a short break

They

A

thought

about

taking a short break

Figure 2.3: A few steps from a TUPA transition sequence.

the sentence “They thought about taking a short break” (Figure 2.1), an oracle parser
would start from the initial state depicted in Figure 2.2, and subsequently apply the
following transition sequence:

Shift, Right-EdgeA, Shift, Swap, Right-EdgeP , Reduce, Shift, Shift, NodeR,
Reduce, Left-RemoteA, Shift, Shift, NodeC , Reduce, Shift, Right-EdgeP ,
Shift, Right-EdgeF , Reduce, Shift, Swap, Right-EdgeD, Reduce, Swap, Right-
EdgeA, Reduce, Reduce, Shift, Reduce, Shift, Right-EdgeC , Finish

A few intermediate steps from this sequence are shown in Figure 2.3. Using super-
vised learning, TUPA would learn to mimic this oracle transition sequence by training a
neural network classifier with a cross-entropy loss (see Section 2.2) to produce the correct
transition at each point in the transition sequence, given the current state of the stack,
the buffer and the graph.

19

2.2 Neural Networks

Neural networks are powerful machine learning models. They have yielded state-of-the-art
results in many fields, including natural language processing (Goldberg, 2016). Inspired
by the brain’s computation mechanism, artificial neural networks operate on dense input
representations by a combination of linear and non-linear transformations, organized in
several layers and trained end-to-end (deep learning). Deep learning and artificial neural
networks have received much attention in several fields of computer science, including
computer vision, speech recognition and natural language processing, due to their best
performance in various tasks (Collobert et al., 2011). In natural language processing,
many of the deep learning methods rely strongly on distributed representation.

A common approach to meaning representation is the representation of words as vec-
tors in a continuous vector space with tens or hundreds of dimensions (Turian et al.,
2010), such that linguistic and semantic regularities between the words are captured in
the vectors (Mikolov et al., 2013b). This kind of representation, called word embedding,
can be learned in an unsupervised manner, from large unlabeled corpora. Several methods
have been developed for generalizing these models to create embeddings for multi-word
phrases, sentences, and even complete documents. These provides complementary seman-
tic information about the text, readily used in many machine learning techniques that
operate on vectors of numbers. The more accurately these vectors represent the meaning
of the text, the better semantic tasks can be solved using them. However, composing
these representation so as to maintain the semantic structure remains a challenge.

Language data is commonly manifested as sequences (e.g., sentences are sequences
of words). Recurrent neural networks (Elman, 1990) allow representing arbitrarily sized
sequences in a fixed-size vector, without ignoring the structured properties of the input.
A specific flavor called Long Short Term Memory (LSTM) is very common as it learns
relatively long-term dependencies. A bidirectional recurrent neural network, such as a
BiLSTM, takes into account both the past and future (Hochreiter and Schmidhuber,
1997; Schuster and Paliwal, 1997; Graves, 2008; Irsoy and Cardie, 2014).

Recurrent neural networks can learn semantically meaningful continuous vector rep-
resentations of multi-word phrases and sentences, typically in the same space as the
word embedding, and they have a relatively simple model that does not depend on pre-
annotation of structure: the network state at each time step is a function of the input
and the state at the previous time step:

ht = f(xt, ht−1)

Where f could be as simple as matrix multiplication followed by a non-linearity, or a more

20

word

LSTM

LSTM

LSTM

LSTM

word

LSTM

LSTM

LSTM

LSTM

word

LSTM

LSTM

LSTM

LSTM

word

LSTM

LSTM

LSTM

LSTM

word

LSTM

LSTM

LSTM

LSTM

word

LSTM

LSTM

LSTM

LSTM

word

LSTM

LSTM

LSTM

LSTM

MLP

Figure 2.4: BiLSTM encoder with MLP classifier.

complicated function such as an LSTM (Long-Short Term Memory) cell, which supports
additive gated updates for alleviating vanishing gradients:

cj =cj−1 � f + g � i

hj = tanh(cj)� o

i =σ(xjW
xi + hj−1W

hi)

f =σ(xjW
xf + hj−1W

hf)

o =σ(xjW
xo + hj−1W

ho)

g = tanh(xjW
xg + hj−1W

hg)

A bidirectional LSTM (BiLSTM), or in general, a bidirectional recurrent neural network
(BiRNN), applies this function to the input sequence both in the original direction and in
reverse, then concatenating the resulting hidden states for each position in the sequence,
and potentially applying the same operation again in multiple layers (see Figure 2.4).

Typically, a feedforward neural network (MLP; multilayer perceptron) is applied on
top of these representations, and a softmax classifier defines a probability distribution
based on the scores for each label:

[softmax(x)]i =
exi∑
j e

xj

Recursive neural networks can also learn phrase representations, taking advantage of a
pre-annotated hierarchical representation (typically syntactic trees) for compositionality
(Socher et al., 2010). These models can learn a representation that facilitates reasoning
and inference (Bowman et al., 2014). A recursive neural network has a state at each node

21

of the structure: if Ci denotes the set of children of node i,

hi = g({f(c) | c ∈ Ci})

where g is an aggregation function, such as concatenation, addition or max. It can also
be a variant of the LSTM cell (Tai et al., 2015).

A recursive neural network can also be used for structure prediction, or parsing (Socher
et al., 2013; Dyer et al., 2015): as the parse is being created, the model can be used to
calculate the intermediate representation at each of the nodes already constructed, and to
make subsequent parsing decisions based upon it. However, doing so efficiently requires
specialized data structures (Bowman et al., 2016), and is not suitable for predicting
complex structures such as UCCA graphs.

(a)
John and Mary Went Home

(b)

John and Mary

went home

Figure 2.5: A recurrent neural network (a) combines distributed representations along a
linear structure, whereas a recursive neural network (b) does so along a pre-determined
hierarchical structure.

Neural networks are typically trained by gradient descent, where the gradient for the
network parameters is calculated using backpropagation. The gradients for training a
recursive neural network are calculated by backpropagation through structure, another
variant of backpropagation, using a recursive “folding” architecture that can represent a
general tree or a directed acyclic graph (DAG) structure (Goller and Kuchler, 1996).

Training neural predictors for independent or sequential predictions is often done with
the categorical cross-entropy loss (also referred to as negative log likelihood):

L(ŷ, y) = −
∑
i

yi log(ŷi)

It measures the dissimilarity between the true label distribution y and the predicted
label distribution ŷ. This is the loss function we use for training the transition classifier
in TUPA, given oracle transitions from an input gold graph.

22

Neural networks-based machine translation provides some sort of an intermediate
encoding in the form of distributed representation that can be encoded from the source
language and then decoded into the target language (Zou et al., 2013), or using memory
and treating the text as a sequence to be converted to another sequence (Sutskever et al.,
2014), using the popular sequence-to-sequence approach. However, the encoding is based
just on averaging across words in the source sentence, on a flat sequence representation,
or at best on a syntactic representation. A semantic representation like a UCCA graph
would perhaps be a better candidate for the structure by which the encoding and decoding
is performed.

While for simple classification tasks such as Textual Entailment or Natural Language
Inference (Dagan et al., 2005; Bowman et al., 2015a), and to some degree for tasks with
a complex output, such as machine translation, too, simple end-to-end neural networks
can go a long way (Bowman et al., 2015b, among others), combinatorical generalization
in learning inevitably requires an inductive bias on the hypothesis class, realized as the
network architecture (Mitchell, 1980; Battaglia et al., 2018). Specifically, scalable learning
of meaning and inference requires an inductive bias on the compositional structure of
language.

. . .

. . .

Perhaps just as critical as the successful prediction of UCCA structure, if not even
more critical for the NLP community, is the distributed representation created when
forming phrases using this structure. Current methods in NLP form multi-word repre-
sentation based on averaging across words or on syntax, which may be sub-optimal in
representing the true meaning of text. Using a more semantically faithful way to compose
words, such as UCCA, may be a key factor in enabling computers to understand natural
language.

2.3 Multitask Learning

Multitask learning (Caruana, 1997) allows exploiting the overlap between tasks to ef-
fectively extend the training data, and has greatly advanced with neural networks and
representation learning. It has been used over the years for NLP tasks with varying
degrees of similarity. Joint and multitask learning are often used when two or more

23

tasks share common information. These techniques have been used in NLP with tasks of
varying degrees of similarity–as regularization, or to enlarge the effective training data.

In semantic role labeling, Toutanova et al. (2005) learned a joint re-reranking log-
linear model across arguments of the same predicate. Ammar et al. (2016); Guo et al.
(2016) applied multitask learning to transition-based syntactic parsing in a multilingual
setting. Joint learning is also often used as an alternative to the pipeline approach,
alleviating error propagation: In transition-based parsing, multitask learning has also
been applied to tagging and parsing (Bohnet and Nivre, 2012; Zhang and Weiss, 2016),
lexical and syntactic analysis (Constant and Nivre, 2016; More, 2016), and semantic-
syntactic analysis (Swayamdipta et al., 2016a; Henderson et al., 2013).

Neural multitask learning has mostly been effective in tackling formally similar tasks
(Søgaard and Goldberg, 2016), including multilingual semantic parsing (Duong et al.,
2017), and cross-domain semantic parsing (Herzig and Berant, 2017; Fan et al., 2017).
Sharing parameters with a low-level task has shown great benefit for transition-based
syntactic parsing (Bohnet and Nivre, 2012; Zhang and Weiss, 2016; Constant and Nivre,
2016; More, 2016). State-of-the-art results in multiple NLP tasks have been achieved
by jointly learning the tasks forming the NLP standard pipeline using a single neural
model (Collobert et al., 2011; Hashimoto et al., 2017), thereby avoiding cascading errors,
common in pipelines.

Much effort has been devoted to joint learning of syntactic and semantic parsing,
including two CoNLL shared tasks (Surdeanu et al., 2008; Hajič et al., 2009) on joint
syntactic parsing and semantic role labeling. Despite their conceptual and practical
appeal, such joint models rarely outperform the pipeline approach of basing semantic
parsing on the output of syntactic parsers (Lluís and Màrquez, 2008; Henderson et al.,
2013; Lewis et al., 2015; Swayamdipta et al., 2016a, 2017).

This thesis revisits the idea of multitask learning for transition-based parsing with
neural networks, combining an unprecedented diverse set of semantic parsing tasks and
learning them with a uniform model. While many multitask architectures exist and have
different advantages, the approach taken here is hard parameter sharing in the encoder
layers of a neural network used for classification.

2.4 Evaluation

Comparing UCCA structures Gp = (Vp, Ep, `p) and Gg = (Vg, Eg, `g), over the same
sequence of terminals W = {w1, . . . , wn} is done as follows. For an edge e = (u, v) in
either graph, its yield y(e) ⊆ W is the set of terminals in W that are descendants of v.

24

Define the set of mutual edges between Gp and Gg:

M(Gp, Gg) = {(e1, e2) ∈ Ep × Eg | y(e1) = y(e2) ∧ `p(e1) = `g(e2)}

Labeled precision and recall are defined by dividing |M(Gp, Gg)| by |Ep| and |Eg|,
respectively, and F-score by taking their harmonic mean. Two variants are reported:
one where we consider only primary edges, and another for remote edges. In all cases,
punctuation units (U) are excluded from the evaluation.

25

Chapter 3

A Transition-Based Directed Acyclic
Graph Parser for UCCA (Published
in ACL 2017)

Daniel Hershcovich1,2, Omri Abend2 and Ari Rappoport2
1The Edmond and Lily Safra Center for Brain Sciences
2School of Computer Science and Engineering
Hebrew University of Jerusalem
{danielh,oabend,arir}@cs.huji.ac.il

Abstract

We present the first parser for UCCA, a cross-linguistically applicable framework for se-
mantic representation, which builds on extensive typological work and supports rapid
annotation. UCCA poses a challenge for existing parsing techniques, as it exhibits reen-
trancy (resulting in DAG structures), discontinuous structures and non-terminal nodes
corresponding to complex semantic units. To our knowledge, the conjunction of these
formal properties is not supported by any existing parser. Our transition-based parser,
which uses a novel transition set and features based on bidirectional LSTMs, has value
not just for UCCA parsing: its ability to handle more general graph structures can in-
form the development of parsers for other semantic DAG structures, and in languages
that frequently use discontinuous structures.

26

3.1 Introduction

Universal Conceptual Cognitive Annotation (UCCA, Abend and Rappoport, 2013) is
a cross-linguistically applicable semantic representation scheme, building on the estab-
lished Basic Linguistic Theory typological framework (Dixon, 2010a,b, 2012), and Cog-
nitive Linguistics literature (Croft and Cruse, 2004). It has demonstrated applicability
to multiple languages, including English, French, German and Czech, support for rapid
annotation by non-experts (assisted by an accessible annotation interface (Abend et al.,
2017)), and stability under translation (Sulem et al., 2015). It has also proven useful for
machine translation evaluation (Birch et al., 2016). UCCA differs from syntactic schemes
in terms of content and formal structure. It exhibits reentrancy, discontinuous nodes
and non-terminals, which no single existing parser supports. Lacking a parser, UCCA’s
applicability has been so far limited, a gap this work addresses.

We present the first UCCA parser, TUPA (Transition-based UCCA Parser), building
on recent advances in discontinuous constituency and dependency graph parsing, and
further introducing novel transitions and features for UCCA. Transition-based techniques
are a natural starting point for UCCA parsing, given the conceptual similarity of UCCA’s
distinctions, centered around predicate-argument structures, to distinctions expressed by
dependency schemes, and the achievements of transition-based methods in dependency
parsing (Dyer et al., 2015; Andor et al., 2016; Kiperwasser and Goldberg, 2016). We are
further motivated by the strength of transition-based methods in related tasks, including
dependency graph parsing (Sagae and Tsujii, 2008; Ribeyre et al., 2014; Tokgöz and
Eryiğit, 2015), constituency parsing (Sagae and Lavie, 2005; Zhang and Clark, 2009; Zhu
et al., 2013; Maier, 2015; Maier and Lichte, 2016), AMR parsing (Wang et al., 2015a,b,
2016; Misra and Artzi, 2016; Goodman et al., 2016; Zhou et al., 2016; Damonte et al.,
2017) and CCG parsing (Zhang and Clark, 2011; Ambati et al., 2015, 2016).

We evaluate TUPA on the English UCCA corpora, including in-domain and out-of-
domain settings. To assess the ability of existing parsers to tackle the task, we develop
a conversion procedure from UCCA to bilexical graphs and trees. Results show superior
performance for TUPA, demonstrating the effectiveness of the presented approach.1

The rest of the paper is structured as follows: Section 3.2 describes UCCA in more
detail. Section 3.3 introduces TUPA. Section 3.4 discusses the data and experimental
setup. Section 3.5 presents the experimental results. Section 3.6 summarizes related
work, and Section 3.7 concludes the paper.

1All parsing and conversion code, as well as trained parser models, are available at https://github.
com/danielhers/tupa.

27

https://github.com/danielhers/tupa
https://github.com/danielhers/tupa

After
L

graduation
P

H
,

U

John
A

moved
P

to
R

Paris
C

A

H

A

(a)

John
A

gave
C

everything up
C

P

A

(b)

John
C

and
N

Mary
C

’s
F

A

trip
P

home
A

(c)

P process
A participant
H linked scene
C center
R relator
N connector
L scene linker
U punctuation
F function unit

Figure 3.1: UCCA structures demonstrating three structural properties exhibited by the
scheme. (a) includes a remote edge (dashed), resulting in “John” having two parents. (b)
includes a discontinuous unit (“gave ... up”). (c) includes a coordination construction
(“John and Mary”). Pre-terminal nodes are omitted for brevity. Right: legend of edge
labels.

3.2 The UCCA Scheme

UCCA graphs are labeled, directed acyclic graphs (DAGs), whose leaves correspond to
the tokens of the text. A node (or unit) corresponds to a terminal or to several terminals
(not necessarily contiguous) viewed as a single entity according to semantic or cognitive
considerations. Edges bear a category, indicating the role of the sub-unit in the parent
relation. Figure 3.1 presents a few examples.

UCCA is a multi-layered representation, where each layer corresponds to a “module”
of semantic distinctions. UCCA’s foundational layer, targeted in this paper, covers the
predicate-argument structure evoked by predicates of all grammatical categories (verbal,
nominal, adjectival and others), the inter-relations between them, and other major lin-
guistic phenomena such as coordination and multi-word expressions. The layer’s basic
notion is the scene, describing a state, action, movement or some other relation that
evolves in time. Each scene contains one main relation (marked as either a Process or
a State), as well as one or more Participants. For example, the sentence “After grad-
uation, John moved to Paris” (Figure 3.1a) contains two scenes, whose main relations
are “graduation” and “moved”. “John” is a Participant in both scenes, while “Paris”
only in the latter. Further categories account for inter-scene relations and the internal
structure of complex arguments and relations (e.g. coordination, multi-word expressions
and modification).

One incoming edge for each non-root node is marked as primary, and the rest (mostly
used for implicit relations and arguments) as remote edges, a distinction made by the
annotator. The primary edges thus form a tree structure, whereas the remote edges
enable reentrancy, forming a DAG.

While parsing technology in general, and transition-based parsing in particular, is
well-established for syntactic parsing, UCCA has several distinct properties that distin-
guish it from syntactic representations, mostly UCCA’s tendency to abstract away from

28

syntactic detail that do not affect argument structure. For instance, consider the following
examples where the concept of a scene has a different rationale from the syntactic con-
cept of a clause. First, non-verbal predicates in UCCA are represented like verbal ones,
such as when they appear in copula clauses or noun phrases. Indeed, in Figure 3.1a,
“graduation” and “moved” are considered separate events, despite appearing in the same
clause. Second, in the same example, “John” is marked as a (remote) Participant in
the graduation scene, despite not being overtly marked. Third, consider the possessive
construction in Figure 3.1c. While in UCCA “trip” evokes a scene in which “John and
Mary” is a Participant, a syntactic scheme would analyze this phrase similarly to “John
and Mary’s shoes”.

These examples demonstrate that a UCCA parser, and more generally semantic
parsers, face an additional level of ambiguity compared to their syntactic counterparts
(e.g., “after graduation” is formally very similar to “after 2pm”, which does not evoke a
scene). Section 3.6 discusses UCCA in the context of other semantic schemes, such as
AMR (Banarescu et al., 2013).

Alongside recent progress in dependency parsing into projective trees, there is in-
creasing interest in parsing into representations with more general structural properties
(see Section 3.6). One such property is reentrancy, namely the sharing of semantic units
between predicates. For instance, in Figure 3.1a, “John” is an argument of both “gradua-
tion” and “moved”, yielding a DAG rather than a tree. A second property is discontinuity,
as in Figure 3.1b, where “gave up” forms a discontinuous semantic unit. Discontinuities
are pervasive, e.g., with multi-word expressions (Schneider et al., 2014). Finally, unlike
most dependency schemes, UCCA uses non-terminal nodes to represent units comprising
more than one word. The use of non-terminal nodes is motivated by constructions with
no clear head, including coordination structures (e.g., “John and Mary” in Figure 3.1c),
some multi-word expressions (e.g., “The Haves and the Have Nots”), and prepositional
phrases (either the preposition or the head noun can serve as the constituent’s head). To
our knowledge, no existing parser supports all structural properties required for UCCA
parsing.

3.3 Transition-based UCCA Parsing

We now turn to presenting TUPA. Building on previous work on parsing reentrancies,
discontinuities and non-terminal nodes, we define an extended set of transitions and
features that supports the conjunction of these properties.

Transition-based parsers (Nivre, 2003) scan the text from start to end, and create the
parse incrementally by applying a transition at each step to the parser’s state, defined

29

Before Transition Transition After Transition Condition
Stack Buffer Nodes Edges Stack Buffer Nodes Edges Terminal?
S x | B V E Shift S | x B V E −
S | x B V E Reduce S B V E −
S | x B V E NodeX S | x y | B V ∪ {y} E ∪ {(y, x)X} − x 6= root
S | y, x B V E Left-EdgeX S | y, x B V E ∪ {(x, y)X} −

x 6∈ w1:n,
y 6= root,
y 6;G x

S | x, y B V E Right-EdgeX S | x, y B V E ∪ {(x, y)X} −
S | y, x B V E Left-RemoteX S | y, x B V E ∪ {(x, y)∗X} −
S | x, y B V E Right-RemoteX S | x, y B V E ∪ {(x, y)∗X} −
S | x, y B V E Swap S | y x | B V E − i(x) < i(y)
[root] ∅ V E Finish ∅ ∅ V E +

Figure 3.2: The transition set of TUPA. We write the stack with its top to the right and
the buffer with its head to the left. (·, ·)X denotes a primary X-labeled edge, and (·, ·)∗X
a remote X-labeled edge. i(x) is a running index for the created nodes. In addition to
the specified conditions, the prospective child in an Edge transition must not already
have a primary parent.

using three data structures: a buffer B of tokens and nodes to be processed, a stack S

of nodes currently being processed, and a graph G = (V,E, `) of constructed nodes and
edges, where V is the set of nodes, E is the set of edges, and ` : E → L is the label
function, L being the set of possible labels. Some states are marked as terminal, meaning
that G is the final output. A classifier is used at each step to select the next transition
based on features encoding the parser’s current state. During training, an oracle creates
training instances for the classifier, based on gold-standard annotations.

Transition Set. Given a sequence of tokens w1, . . . , wn, we predict a UCCA graph G

over the sequence. Parsing starts with a single node on the stack (an artificial root node),
and the input tokens in the buffer. Figure 3.2 shows the transition set.

In addition to the standard Shift and Reduce operations, we follow previous work
in transition-based constituency parsing (Sagae and Lavie, 2005), adding the Node tran-
sition for creating new non-terminal nodes. For every X ∈ L, NodeX creates a new
node on the buffer as a parent of the first element on the stack, with an X-labeled edge.
Left-EdgeX and Right-EdgeX create a new primary X-labeled edge between the
first two elements on the stack, where the parent is the left or the right node, respec-
tively. As a UCCA node may only have one incoming primary edge, Edge transitions
are disallowed if the child node already has an incoming primary edge. Left-RemoteX

and Right-RemoteX do not have this restriction, and the created edge is additionally
marked as remote. We distinguish between these two pairs of transitions to allow the
parser to create remote edges without the possibility of producing invalid graphs. To
support the prediction of multiple parents, node and edge transitions leave the stack
unchanged, as in other work on transition-based dependency graph parsing (Sagae and
Tsujii, 2008; Ribeyre et al., 2014; Tokgöz and Eryiğit, 2015). Reduce pops the stack,

30

to allow removing a node once all its edges have been created. To handle discontinuous
nodes, Swap pops the second node on the stack and adds it to the top of the buffer, as
with the similarly named transition in previous work (Nivre, 2009; Maier, 2015). Finally,
Finish pops the root node and marks the state as terminal.

Classifier. The choice of classifier and feature representation has been shown to play an
important role in transition-based parsing (Chen and Manning, 2014; Andor et al., 2016;
Kiperwasser and Goldberg, 2016). To investigate the impact of the type of transition
classifier in UCCA parsing, we experiment with three different models.

1. Starting with a simple and common choice (e.g., Maier and Lichte, 2016), TUPASparse

uses a linear classifier with sparse features, trained with the averaged structured
perceptron algorithm (Collins and Roark, 2004) and MinUpdate (Goldberg and
Elhadad, 2011): each feature requires a minimum number of updates in training to
be included in the model.2

2. Changing the model to a feedforward neural network with dense embedding fea-
tures, TUPAMLP (“multi-layer perceptron”), uses an architecture similar to that
of Chen and Manning (2014), but with two rectified linear layers instead of one
layer with cube activation. The embeddings and classifier are trained jointly.

3. Finally, TUPABiLSTM uses a bidirectional LSTM for feature representation, on
top of the dense embedding features, an architecture similar to Kiperwasser and
Goldberg (2016). The BiLSTM runs on the input tokens in forward and backward
directions, yielding a vector representation that is then concatenated with dense
features representing the parser state (e.g., existing edge labels and previous parser
actions; see below). This representation is then fed into a feedforward network
similar to TUPAMLP. The feedforward layers, BiLSTM and embeddings are all
trained jointly.

For all classifiers, inference is performed greedily, i.e., without beam search. Hyper-
parameters are tuned on the development set (see Section 3.4).

Features. TUPASparse uses binary indicator features representing the words, POS tags,
syntactic dependency labels and existing edge labels related to the top four stack elements
and the next three buffer elements, in addition to their children and grandchildren in
the graph. We also use bi- and trigram features based on these values (Zhang and

2We also experimented with a linear model using dense embedding features, trained with the averaged
structured perceptron algorithm. It performed worse than the sparse perceptron model and was hence
discarded.

31

Parser state
S

,
B
John moved to Paris .

G

After
L

graduation
P

H

Transition classifier

After

LSTM

LSTM

LSTM

LSTM

graduation

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

Paris

LSTM

LSTM

LSTM

LSTM

…

…

…

…

…

MLP

NodeU

Figure 3.3: Illustration of the TUPA model. Top: parser state (stack, buffer and inter-
mediate graph). Bottom: TUPABiLTSM architecture. Vector representation for the input
tokens is computed by two layers of bidirectional LSTMs. The vectors for specific tokens
are concatenated with embedding and numeric features from the parser state (for exist-
ing edge labels, number of children, etc.), and fed into the MLP for selecting the next
transition.

Clark, 2009; Zhu et al., 2013), features related to discontinuous nodes (Maier, 2015,
including separating punctuation and gap type), features representing existing edges and
the number of parents and children, as well as the past actions taken by the parser. In
addition, we use use a novel, UCCA-specific feature: number of remote children.3

For TUPAMLP and TUPABiLSTM, we replace all indicator features by a concatenation
of the vector embeddings of all represented elements: words, POS tags, syntactic depen-
dency labels, edge labels, punctuation, gap type and parser actions. These embeddings
are initialized randomly. We additionally use external word embeddings initialized with
pre-trained word2vec vectors (Mikolov et al., 2013a),4 updated during training. In addi-
tion to dropout between NN layers, we apply word dropout (Kiperwasser and Goldberg,
2016): with a certain probability, the embedding for a word is replaced with a zero vector.

3See Appendix A.1 for a full list of used feature templates.
4https://goo.gl/6ovEhC

32

 https://goo.gl/6ovEhC

We do not apply word dropout to the external word embeddings.
Finally, for all classifiers we add a novel real-valued feature to the input vector, ratio,

corresponding to the ratio between the number of terminals to number of nodes in the
graph G. This feature serves as a regularizer for the creation of new nodes, and should
be beneficial for other transition-based constituency parsers too.

Training. For training the transition classifiers, we use a dynamic oracle (Goldberg
and Nivre, 2012), i.e., an oracle that outputs a set of optimal transitions: when applied
to the current parser state, the gold standard graph is reachable from the resulting state.
For example, the oracle would predict a Node transition if the stack has on its top a
parent in the gold graph that has not been created, but would predict a Right-Edge
transition if the second stack element is a parent of the first element according to the
gold graph and the edge between them has not been created. The transition predicted by
the classifier is deemed correct and is applied to the parser state to reach the subsequent
state, if the transition is included in the set of optimal transitions. Otherwise, a random
optimal transition is applied, and for the perceptron-based parser, the classifier’s weights
are updated according to the perceptron update rule.

POS tags and syntactic dependency labels are extracted using spaCy (Honnibal and
Johnson, 2015).5 We use the categorical cross-entropy objective function and optimize
the NN classifiers with the Adam optimizer (Kingma and Ba, 2014).

3.4 Experimental Setup

Data. We conduct our experiments on the UCCA Wikipedia corpus (henceforth, Wiki),
and use the English part of the UCCA Twenty Thousand Leagues Under the Sea English-
French parallel corpus (henceforth, 20K Leagues) as out-of-domain data.6 Table 3.1
presents some statistics for the two corpora. We use passages of indices up to 676 of
the Wiki corpus as our training set, passages 688–808 as development set, and passages
942–1028 as in-domain test set. While UCCA edges can cross sentence boundaries, we
adhere to the common practice in semantic parsing and train our parsers on individual
sentences, discarding inter-relations between them (0.18% of the edges). We also discard
linkage nodes and edges (as they often express inter-sentence relations and are thus mostly
redundant when applied at the sentence level) as well as implicit nodes.7 In the out-of-
domain experiments, we apply the same parsers (trained on the Wiki training set) to the
20K Leagues corpus without parameter re-tuning.

5https://spacy.io
6http://cs.huji.ac.il/~oabend/ucca.html
7Appendix A.2 further discusses linkage and implicit units.

33

https://spacy.io
http://cs.huji.ac.il/~oabend/ucca.html

Wiki 20K
Train Dev Test Leagues

passages 300 34 33 154
sentences 4268 454 503 506
nodes 298,993 33,704 35,718 29,315
% terminal 42.96 43.54 42.87 42.09
% non-term. 58.33 57.60 58.35 60.01
% discont. 0.54 0.53 0.44 0.81
% reentrant 2.38 1.88 2.15 2.03
edges 287,914 32,460 34,336 27,749
% primary 98.25 98.75 98.74 97.73
% remote 1.75 1.25 1.26 2.27
Average per non-terminal node
children 1.67 1.68 1.66 1.61

Table 3.1: Statistics of the Wiki and 20K Leagues UCCA corpora. All counts exclude
the root node, implicit nodes, and linkage nodes and edges.

Implementation. We use the DyNet package (Neubig et al., 2017) for implementing
the NN classifiers. Unless otherwise noted, we use the default values provided by the
package. See Appendix A.3 for the hyperparameter values we found by tuning on the
development set.

Evaluation. We define a simple measure for comparing UCCA structures Gp = (Vp, Ep, `p)

and Gg = (Vg, Eg, `g), the predicted and gold-standard graphs, respectively, over the same
sequence of terminals W = {w1, . . . , wn}. For an edge e = (u, v) in either graph, u being
the parent and v the child, its yield y(e) ⊆ W is the set of terminals in W that are
descendants of v. Define the set of mutual edges between Gp and Gg:

M(Gp, Gg) = {(e1, e2) ∈ Ep × Eg | y(e1) = y(e2) ∧ `p(e1) = `g(e2)}

Labeled precision and recall are defined by dividing |M(Gp, Gg)| by |Ep| and |Eg|,
respectively, and F-score by taking their harmonic mean. We report two variants of this
measure: one where we consider only primary edges, and another for remote edges (see
Section 3.2). Performance on remote edges is of pivotal importance in this investigation,
which focuses on extending the class of graphs supported by statistical parsers.

We note that the measure collapses to the standard PARSEVAL constituency evalu-
ation measure if Gp and Gg are trees. Punctuation is excluded from the evaluation, but
not from the datasets.

Comparison to bilexical graph parsers. As no direct comparison with existing
parsers is possible, we compare TUPA to bilexical dependency graph parsers, which

34

After graduation , John moved to Paris

L
U

A
A

H

R

A

John gave everything up

A
A

C

John and Mary went home

A

N

C
A

Figure 3.4: Bilexical graph approximation (dependency graph) for the sentences in Fig-
ure 3.1.

Wiki (in-domain) 20K Leagues (out-of-domain)
Primary Remote Primary Remote

LP LR LF LP LR LF LP LR LF LP LR LF
TUPASparse 64.5 63.7 64.1 19.8 13.4 16 59.6 59.9 59.8 22.2 7.7 11.5
TUPAMLP 65.2 64.6 64.9 23.7 13.2 16.9 62.3 62.6 62.5 20.9 6.3 9.7
TUPABiLSTM 74.4 72.7 73.5 47.4 51.6 49.4 68.7 68.5 68.6 38.6 18.8 25.3
Bilexical Approximation (Dependency DAG Parsers)
Upper Bound 91 58.3 91.3 43.4
DAGParser 61.8 55.8 58.6 9.5 0.5 1 56.4 50.6 53.4 – 0 0
TurboParser 57.7 46 51.2 77.8 1.8 3.7 50.3 37.7 43.1 100 0.4 0.8
Tree Approximation (Constituency Tree Parser)
Upper Bound 100 – 100 –
uparse 60.9 61.2 61.1 – – – 52.7 52.8 52.8 – – –
Bilexical Tree Approximation (Dependency Tree Parsers)
Upper Bound 91 – 91.3 –
MaltParser 62.8 57.7 60.2 – – – 57.8 53 55.3 – – –
LSTM Parser 73.2 66.9 69.9 – – – 66.1 61.1 63.5 – – –

Table 3.2: Experimental results, in percents, on the Wiki test set (left) and the 20K
Leagues set (right). Columns correspond to labeled precision, recall and F-score, for both
primary and remote edges. F-score upper bounds are reported for the conversions. For
the tree approximation experiments, only primary edges scores are reported, as they are
unable to predict remote edges. TUPABiLSTM obtains the highest F-scores in all metrics,
surpassing the bilexical parsers, tree parsers and other classifiers.

35

After
L

graduation
P

H

,
U

John
A

moved
P

to
R

Paris
C

A

H

After graduation , John moved to Paris

L U A

H

R

A

Figure 3.5: Tree approximation (constituency) for the sentence in Figure 3.1a (top), and
bilexical tree approximation (dependency) for the same sentence (bottom). These are
identical to the original graphs, apart from the removal of remote edges.

support reentrancy and discontinuity but not non-terminal nodes.
To facilitate the comparison, we convert our training set into bilexical graphs (see

examples in Figure 3.4), train each of the parsers, and evaluate them by applying them
to the test set and then reconstructing UCCA graphs, which are compared with the gold
standard. The conversion to bilexical graphs is done by heuristically selecting a head
terminal for each non-terminal node, and attaching all terminal descendents to the head
terminal. In the inverse conversion, we traverse the bilexical graph in topological order,
creating non-terminal parents for all terminals, and attaching them to the previously-
created non-terminals corresponding to the bilexical heads.8

In Section 3.5 we report the upper bounds on the achievable scores due to the error
resulting from the removal of non-terminal nodes.

Comparison to tree parsers. For completeness, and as parsing technology is consid-
erably more mature for tree (rather than graph) parsing, we also perform a tree approx-
imation experiment, converting UCCA to (bilexical) trees and evaluating constituency
and dependency tree parsers on them (see examples in Figure 3.5). Our approach is sim-
ilar to the tree approximation approach used for dependency graph parsing (Agić et al.,
2015; Fernández-González and Martins, 2015), where dependency graphs were converted
into dependency trees and then parsed by dependency tree parsers. In our setting, the
conversion to trees consists simply of removing remote edges from the graph, and then
to bilexical trees by applying the same procedure as for bilexical graphs.

Baseline parsers. We evaluate two bilexical graph semantic dependency parsers: DAGParser
(Ribeyre et al., 2014), the leading transition-based parser in SemEval 2014 (Oepen et al.,

8See Appendix A.4 for a detailed description of the conversion procedures.

36

2014) and TurboParser (Almeida and Martins, 2015), a graph-based parser from SemEval
2015 (Oepen et al., 2015); uparse (Maier and Lichte, 2016), a transition-based con-
stituency parser supporting discontinuous constituents; and two bilexical tree parsers:
MaltParser (Nivre et al., 2007), and the stack LSTM-based parser of Dyer et al. (2015,
henceforce “LSTM Parser”). Default settings are used in all cases.9 DAGParser and
uparse use beam search by default, with a beam size of 5 and 4 respectively. The other
parsers are greedy.

3.5 Results

Table 3.2 presents our main experimental results, as well as upper bounds for the baseline
parsers, reflecting the error resulting from the conversion.10

DAGParser and uparse are most directly comparable to TUPASparse, as they also
use a perceptron classifier with sparse features. TUPASparse considerably outperforms
both, where DAGParser does not predict any remote edges in the out-of-domain setting.
TurboParser fares worse in this comparison, despite somewhat better results on remote
edges. The LSTM parser of Dyer et al. (2015) obtains the highest primary F-score among
the baseline parsers, with a considerable margin.

Using a feedforward NN and embedding features, TUPAMLP obtains higher scores
than TUPASparse, but is outperformed by the LSTM parser on primary edges. However,
using better input encoding allowing virtual look-ahead and look-behind in the token
representation, TUPABiLSTM obtains substantially higher scores than TUPAMLP and all
other parsers, on both primary and remote edges, both in the in-domain and out-of-
domain settings. Its performance in absolute terms, of 73.5% F-score on primary edges,
is encouraging in light of UCCA’s inter-annotator agreement of 80–85% F-score on them
(Abend and Rappoport, 2013).

The parsers resulting from tree approximation are unable to recover any remote edges,
as these are removed in the conversion.11 The bilexical DAG parsers are quite limited in
this respect as well. While some of the DAG parsers’ difficulty can be attributed to the
conversion upper bound of 58.3%, this in itself cannot account for their poor performance
on remote edges, which is an order of magnitude lower than that of TUPABiLSTM.

9For MaltParser we use the ArcEager transition set and SVM classifier. Other configurations
yielded lower scores.

10The low upper bound for remote edges is partly due to the removal of implicit nodes (not supported
in bilexical representations), where the whole sub-graph headed by such nodes, often containing remote
edges, must be discarded.

11We also experimented with a simpler version of TUPA lacking Remote transitions, obtaining an
increase of up to 2 labeled F-score points on primary edges, at the cost of not being able to predict
remote edges.

37

3.6 Related Work

While earlier work on anchored12 semantic parsing has mostly concentrated on shallow
semantic analysis, focusing on semantic role labeling of verbal argument structures, the
focus has recently shifted to parsing of more elaborate representations that account for
a wider range of phenomena (Abend and Rappoport, 2017).

Grammar-Based Parsing. Linguistically expressive grammars such as HPSG (Pol-
lard and Sag, 1994a), CCG (Steedman, 2000) and TAG (Joshi and Schabes, 1997) provide
a theory of the syntax-semantics interface, and have been used as a basis for seman-
tic parsers by defining compositional semantics on top of them (Flickinger, 2000; Bos,
2005, among others). Depending on the grammar and the implementation, such semantic
parsers can support some or all of the structural properties UCCA exhibits. Nevertheless,
this line of work differs from our approach in two important ways. First, the represen-
tations are different. UCCA does not attempt to model the syntax-semantics interface
and is thus less coupled with syntax. Second, while grammar-based parsers explicitly
model syntax, our approach directly models the relation between tokens and semantic
structures, without explicit composition rules.

Broad-Coverage Semantic Parsing. Most closely related to this work is Broad-
Coverage Semantic Dependency Parsing (SDP), addressed in two SemEval tasks (Oepen
et al., 2014, 2015). Like UCCA parsing, SDP addresses a wide range of semantic phe-
nomena, and supports discontinuous units and reentrancy. In SDP, however, bilexical
dependencies are used, and a head must be selected for every relation–even in construc-
tions that have no clear head, such as coordination (Ivanova et al., 2012). The use of
non-terminal nodes is a simple way to avoid this liability. SDP also differs from UCCA
in the type of distinctions it makes, which are more tightly coupled with syntactic con-
siderations, where UCCA aims to capture purely semantic cross-linguistically applicable
notions. For instance, the “poss” label in the DM target representation is used to anno-
tate syntactic possessive constructions, regardless of whether they correspond to semantic
ownership (e.g., “John’s dog”) or other semantic relations, such as marking an argument
of a nominal predicate (e.g., “John’s kick”). UCCA reflects the difference between these
constructions.

Recent interest in SDP has yielded numerous works on graph parsing (Ribeyre et al.,
2014; Thomson et al., 2014; Almeida and Martins, 2015; Du et al., 2015), including tree

12By anchored we mean that the semantic representation directly corresponds to the words and phrases
of the text.

38

approximation (Agić and Koller, 2014; Schluter et al., 2014) and joint syntactic/semantic
parsing (Henderson et al., 2013; Swayamdipta et al., 2016a).

Abstract Meaning Representation. Another line of work addresses parsing into
AMRs (Flanigan et al., 2014; Vanderwende et al., 2015; Pust et al., 2015; Artzi et al.,
2015), which, like UCCA, abstract away from syntactic distinctions and represent mean-
ing directly, using OntoNotes predicates (Weischedel et al., 2013). Events in AMR may
also be evoked by non-verbal predicates, including possessive constructions.

Unlike in UCCA, the alignment between AMR concepts and the text is not explicitly
marked. While sharing much of this work’s motivation, not anchoring the representation
in the text complicates the parsing task, as it requires the alignment to be automatically
(and imprecisely) detected. Indeed, despite considerable technical effort (Flanigan et al.,
2014; Pourdamghani et al., 2014; Werling et al., 2015), concept identification is only
about 80%–90% accurate. Furthermore, anchoring allows breaking down sentences into
semantically meaningful sub-spans, which is useful for many applications (Fernández-
González and Martins, 2015; Birch et al., 2016).

Several transition-based AMR parsers have been proposed: CAMR assumes syntac-
tically parsed input, processing dependency trees into AMR (Wang et al., 2015a,b, 2016;
Goodman et al., 2016). In contrast, the parsers of Damonte et al. (2017) and Zhou et al.
(2016) do not require syntactic pre-processing. Damonte et al. (2017) perform concept
identification using a simple heuristic selecting the most frequent graph for each token,
and Zhou et al. (2016) perform concept identification and parsing jointly. UCCA pars-
ing does not require separately aligning the input tokens to the graph. TUPA creates
non-terminal units as part of the parsing process.

Furthermore, existing transition-based AMR parsers are not general DAG parsers.
They are only able to predict a subset of reentrancies and discontinuities, as they may
remove nodes before their parents have been predicted (Damonte et al., 2017). They
are thus limited to a sub-class of AMRs in particular, and specifically cannot produce
arbitrary DAG parses. TUPA’s transition set, on the other hand, allows general DAG
parsing.13

3.7 Conclusion

We present TUPA, the first parser for UCCA. Evaluated in in-domain and out-of-domain
settings, we show that coupled with a NN classifier and BiLSTM feature extractor, it

13See Appendix A.5 for a proof sketch for the completeness of TUPA’s transition set.

39

accurately predicts UCCA graphs from text, outperforming a variety of strong baselines
by a margin.

Despite the recent diversity of semantic parsing work, the effectiveness of different
approaches for structurally and semantically different schemes is not well-understood
(Kuhlmann and Oepen, 2016). Our contribution to this literature is a general parser
that supports multiple parents, discontinuous units and non-terminal nodes.

Future work will evaluate TUPA in a multilingual setting, assessing UCCA’s cross-
linguistic applicability. We will also apply the TUPA transition scheme to different
target representations, including AMR and SDP, exploring the limits of its generality. In
addition, we will explore different conversion procedures (Kong et al., 2015) to compare
different representations, suggesting ways for a data-driven design of semantic annotation.

A parser for UCCA will enable using the framework for new tasks, in addition to ex-
isting applications such as machine translation evaluation (Birch et al., 2016). We believe
UCCA’s merits in providing a cross-linguistically applicable, broad-coverage annotation
will support ongoing efforts to incorporate deeper semantic structures into various appli-
cations, such as sentence simplification (Narayan and Gardent, 2014) and summarization
(Liu et al., 2015).

Acknowledgments

This work was supported by the HUJI Cyber Security Research Center in conjunction
with the Israel National Cyber Bureau in the Prime Minister’s Office, and by the Intel
Collaborative Research Institute for Computational Intelligence (ICRI-CI). The first au-
thor was supported by a fellowship from the Edmond and Lily Safra Center for Brain
Sciences. We thank Wolfgang Maier, Nathan Schneider, Elior Sulem and the anonymous
reviewers for their helpful comments.

40

Chapter 4

Multitask Parsing Across Semantic
Representations (Published in ACL
2018)

Daniel Hershcovich1,2, Omri Abend2 and Ari Rappoport2
1The Edmond and Lily Safra Center for Brain Sciences
2School of Computer Science and Engineering
Hebrew University of Jerusalem
{danielh,oabend,arir}@cs.huji.ac.il

Abstract

The ability to consolidate information of different types is at the core of intelligence, and
has tremendous practical value in allowing learning for one task to benefit from gener-
alizations learned for others. In this paper we tackle the challenging task of improving
semantic parsing performance, taking UCCA parsing as a test case, and AMR, SDP and
Universal Dependencies (UD) parsing as auxiliary tasks. We experiment on three lan-
guages, using a uniform transition-based system and learning architecture for all parsing
tasks. Despite notable conceptual, formal and domain differences, we show that multi-
task learning significantly improves UCCA parsing in both in-domain and out-of-domain
settings. Our code is publicly available.1

1http://github.com/danielhers/tupa

41

http://github.com/danielhers/tupa

4.1 Introduction

Semantic parsing has arguably yet to reach its full potential in terms of its contribution
to downstream linguistic tasks, partially due to the limited amount of semantically anno-
tated training data. This shortage is more pronounced in languages other than English,
and less researched domains.

Indeed, recent work in semantic parsing has targeted, among others, Abstract Meaning
Representation (AMR; Banarescu et al., 2013), bilexical Semantic Dependencies (SDP;
Oepen et al., 2016) and Universal Conceptual Cognitive Annotation (UCCA; Abend and
Rappoport, 2013). While these schemes are formally different and focus on different
distinctions, much of their semantic content is shared (Abend and Rappoport, 2017).

Multitask learning (MTL; Caruana, 1997) allows exploiting the overlap between tasks
to effectively extend the training data, and has greatly advanced with neural networks
and representation learning (see §4.2). We build on these ideas and propose a general
transition-based DAG parser, able to parse UCCA, AMR, SDP and UD (Nivre et al.,
2016). We train the parser using MTL to obtain significant improvements on UCCA
parsing over single-task training in (1) in-domain and (2) out-of-domain settings in En-
glish; (3) an in-domain setting in German; and (4) an in-domain setting in French, where
training data is scarce.

The novelty of this work is in proposing a general parsing and learning architecture,
able to accommodate such widely different parsing tasks, and in leveraging it to show
benefits from learning them jointly.

4.2 Related Work

MTL has been used over the years for NLP tasks with varying degrees of similarity,
examples including joint classification of different arguments in semantic role labeling
(Toutanova et al., 2005), and joint parsing and named entity recognition (Finkel and
Manning, 2009). Similar ideas, of parameter sharing across models trained with different
datasets, can be found in studies of domain adaptation (Blitzer et al., 2006; Daume III,
2007; Ziser and Reichart, 2017). For parsing, domain adaptation has been applied suc-
cessfully in parser combination and co-training (McClosky et al., 2010; Baucom et al.,
2013).

Neural MTL has mostly been effective in tackling formally similar tasks (Søgaard and
Goldberg, 2016), including multilingual syntactic dependency parsing (Ammar et al.,
2016; Guo et al., 2016), as well as multilingual (Duong et al., 2017), and cross-domain
semantic parsing (Herzig and Berant, 2017; Fan et al., 2017).

42

Sharing parameters with a low-level task has shown great benefit for transition-based
syntactic parsing, when jointly training with POS tagging (Bohnet and Nivre, 2012;
Zhang and Weiss, 2016), and with lexical analysis (Constant and Nivre, 2016; More, 2016).
Recent work has achieved state-of-the-art results in multiple NLP tasks by jointly learning
the tasks forming the NLP standard pipeline using a single neural model (Collobert et al.,
2011; Hashimoto et al., 2017), thereby avoiding cascading errors, common in pipelines.

Much effort has been devoted to joint learning of syntactic and semantic parsing,
including two CoNLL shared tasks (Surdeanu et al., 2008; Hajič et al., 2009). Despite
their conceptual and practical appeal, such joint models rarely outperform the pipeline ap-
proach (Lluís and Màrquez, 2008; Henderson et al., 2013; Lewis et al., 2015; Swayamdipta
et al., 2016a, 2017).

Peng et al. (2017a) performed MTL for SDP in a closely related setting to ours. They
tackled three tasks, annotated over the same text and sharing the same formal structures
(bilexical DAGs), with considerable edge overlap, but differing in target representations
(see §4.3). For all tasks, they reported an increase of 0.5-1 labeled F1 points. Recently,
Peng et al. (2018) applied a similar approach to joint frame-semantic parsing and semantic
dependency parsing, using disjoint datasets, and reported further improvements.

4.3 Tackled Parsing Tasks

In this section, we outline the parsing tasks we address. We focus on representations
that produce full-sentence analyses, i.e., produce a graph covering all (content) words
in the text, or the lexical concepts they evoke. This contrasts with “shallow” semantic
parsing, primarily semantic role labeling (SRL; Gildea and Jurafsky, 2002; Palmer et al.,
2005), which targets argument structure phenomena using flat structures. We consider
four formalisms: UCCA, AMR, SDP and Universal Dependencies. Figure 4.1 presents
one sentence annotated in each scheme.

Universal Conceptual Cognitive Annotation. UCCA (Abend and Rappoport,
2013) is a semantic representation whose main design principles are ease of annotation,
cross-linguistic applicability, and a modular architecture. UCCA represents the seman-
tics of linguistic utterances as directed acyclic graphs (DAGs), where terminal (childless)
nodes correspond to the text tokens, and non-terminal nodes to semantic units that par-
ticipate in some super-ordinate relation. Edges are labeled, indicating the role of a child
in the relation the parent represents. Nodes and edges belong to one of several layers, each
corresponding to a “module” of semantic distinctions. UCCA’s foundational layer (the
only layer for which annotated data exists) mostly covers predicate-argument structure,

43

semantic heads and inter-Scene relations.
UCCA distinguishes primary edges, corresponding to explicit relations, from remote

edges (appear dashed in Figure 4.1a) that allow for a unit to participate in several super-
ordinate relations. Primary edges form a tree in each layer, whereas remote edges enable
reentrancy, forming a DAG.

Abstract Meaning Representation. AMR (Banarescu et al., 2013) is a semantic
representation that encodes information about named entities, argument structure, se-
mantic roles, word sense and co-reference. AMRs are rooted directed graphs, in which
both nodes and edges are labeled. Most AMRs are DAGs, although cycles are permitted.

AMR differs from the other schemes we consider in that it does not anchor its graphs
in the words of the sentence (Figure 4.1b). Instead, AMR graphs connect variables,
concepts (from a pre-defined set) and constants (which may be strings or numbers). Still,
most AMR nodes are alignable to text tokens, a tendency used by AMR parsers, which
align a subset of the graph nodes to a subset of the text tokens (concept identification).
In this work, we use pre-aligned AMR graphs.

Despite the brief period since its inception, AMR has been targeted by a number of
works, notably in two SemEval shared tasks (May, 2016; May and Priyadarshi, 2017). To
tackle its variety of distinctions and unrestricted graph structure, AMR parsers often use
specialized methods. Graph-based parsers construct AMRs by identifying concepts and
scoring edges between them, either in a pipeline fashion (Flanigan et al., 2014; Artzi et al.,
2015; Pust et al., 2015; Foland and Martin, 2017), or jointly (Zhou et al., 2016). Another
line of work trains machine translation models to convert strings into linearized AMRs
(Barzdins and Gosko, 2016; Peng et al., 2017b; Konstas et al., 2017; Buys and Blunsom,
2017b). Transition-based AMR parsers either use dependency trees as pre-processing,
then mapping them into AMRs (Wang et al., 2015a,b, 2016; Goodman et al., 2016), or
use a transition system tailored to AMR parsing (Damonte et al., 2017; Ballesteros and
Al-Onaizan, 2017). We differ from the above approaches in addressing AMR parsing
using the same general DAG parser used for other schemes.

Semantic Dependency Parsing. SDP uses a set of related representations, targeted
in two recent SemEval shared tasks (Oepen et al., 2014, 2015), and extended by Oepen
et al. (2016). They correspond to four semantic representation schemes, referred to
as DM, PAS, PSD and CCD, representing predicate-argument relations between con-
tent words in a sentence. All are based on semantic formalisms converted into bilexical
dependencies–directed graphs whose nodes are text tokens. Edges are labeled, encoding
semantic relations between the tokens. Non-content tokens, such as punctuation, are left

44

out of the analysis (see Figure 4.1c). Graphs containing cycles have been removed from
the SDP datasets.

We use one of the representations from the SemEval shared tasks: DM (DELPH-IN
MRS), converted from DeepBank (Flickinger et al., 2012), a corpus of hand-corrected
parses from LinGO ERG (Copestake and Flickinger, 2000), an HPSG (Pollard and Sag,
1994b) using Minimal Recursion Semantics (Copestake et al., 2005).

Universal Dependencies. UD (Nivre et al., 2016, 2017) has quickly become the dom-
inant dependency scheme for syntactic annotation in many languages, aiming for cross-
linguistically consistent and coarse-grained treebank annotation. Formally, UD uses bilex-
ical trees, with edge labels representing syntactic relations between words.

We use UD as an auxiliary task, inspired by previous work on joint syntactic and
semantic parsing (see §4.2). In order to reach comparable analyses cross-linguistically,
UD often ends up in annotation that is similar to the common practice in semantic
treebanks, such as linking content words to content words wherever possible. Using UD
further allows conducting experiments on languages other than English, for which AMR
and SDP annotated data is not available (§4.7).

In addition to basic UD trees, we use the enhanced++ UD graphs available for En-
glish, which are generated by the Stanford CoreNLP converters (Schuster and Manning,
2016).2 These include additional and augmented relations between content words, par-
tially overlapping with the notion of remote edges in UCCA: in the case of control verbs,
for example, a direct relation is added in enhanced++ UD between the subordinated verb
and its controller, which is similar to the semantic schemes’ treatment of this construction.

4.4 General Transition-based DAG Parser

All schemes considered in this work exhibit reentrancy and discontinuity (or non-projectivity),
to varying degrees. In addition, UCCA and AMR contain non-terminal nodes. To parse
these graphs, we extend TUPA (Hershcovich et al., 2017), a transition-based parser orig-
inally developed for UCCA, as it supports all these structural properties. TUPA’s transi-
tion system can yield any labeled DAG whose terminals are anchored in the text tokens.
To support parsing into AMR, which uses graphs that are not anchored in the tokens, we
take advantage of existing alignments of the graphs with the text tokens during training
(§4.5).

First used for projective syntactic dependency tree parsing (Nivre, 2003), transition-
based parsers have since been generalized to parse into many other graph families, such

2http://github.com/stanfordnlp/CoreNLP

45

http://github.com/stanfordnlp/CoreNLP

as (discontinuous) constituency trees (e.g., Zhang and Clark, 2009; Maier and Lichte,
2016), and DAGs (e.g., Sagae and Tsujii, 2008; Du et al., 2015). Transition-based parsers
apply transitions incrementally to an internal state defined by a buffer B of remaining
tokens and nodes, a stack S of unresolved nodes, and a labeled graph G of constructed
nodes and edges. When a terminal state is reached, the graph G is the final output. A
classifier is used at each step to select the next transition, based on features that encode
the current state.

4.4.1 TUPA’s Transition Set

Given a sequence of tokens w1, . . . , wn, we predict a rooted graph G whose terminals are
the tokens. Parsing starts with the root node on the stack, and the input tokens in the
buffer.

The TUPA transition set includes the standard Shift and Reduce operations,
NodeX for creating a new non-terminal node and an X-labeled edge, Left-EdgeX and
Right-EdgeX to create a new primary X-labeled edge, Left-RemoteX and Right-
RemoteX to create a new remote X-labeled edge, Swap to handle discontinuous nodes,
and Finish to mark the state as terminal.

Although UCCA contains nodes without any text tokens as descendants (called im-
plicit units), these nodes are infrequent and only cover 0.5% of non-terminal nodes. For
this reason we follow previous work (Hershcovich et al., 2017) and discard implicit units
from the training and evaluation, and so do not include transitions for creating them.

In AMR, implicit units are considerably more common, as any unaligned concept with
no aligned descendents is implicit (about 6% of the nodes). Implicit AMR nodes usually
result from alignment errors, or from abstract concepts which have no explicit realization
in the text (Buys and Blunsom, 2017a). We ignore implicit nodes when training on
AMR as well. TUPA also does not support node labels, which are ubiquitous in AMR
but absent in UCCA structures (only edges are labeled in UCCA). We therefore only
produce edge labels and not node labels when training on AMR.

4.4.2 Transition Classifier

To predict the next transition at each step, we use a BiLSTM with embeddings as inputs,
followed by an MLP and a softmax layer for classification (Kiperwasser and Goldberg,
2016). The model is illustrated in Figure 4.2. Inference is performed greedily, and training
is done with an oracle that yields the set of all optimal transitions at a given state (those
that lead to a state from which the gold graph is still reachable). Out of this set, the actual
transition performed in training is the one with the highest score given by the classifier,

46

which is trained to maximize the sum of log-likelihoods of all optimal transitions at each
step.

Parser state
S

,
B
John moved to Paris .

G

After
L

graduation
P

H

Classifier

BiLSTM

Embeddings

After graduation to Paris…

MLP

transition

softmax

Figure 4.2: Illustration of the TUPA model, adapted from Hershcovich et al. (2017). Top:
parser state. Bottom: BiLTSM architecture.

Features. We use the original TUPA features, representing the words, POS tags, syn-
tactic dependency relations, and previously predicted edge labels for nodes in specific
locations in the parser state. In addition, for each token we use embeddings representing
the one-character prefix, three-character suffix, shape (capturing orthographic features,
e.g., “Xxxx”), and named entity type,3 all provided by spaCy (Honnibal and Montani,
2018).4 To the learned word vectors, we concatenate the 250K most frequent word vec-
tors from fastText (Bojanowski et al., 2017),5 pre-trained over Wikipedia and updated
during training.

Constraints. As each annotation scheme has different constraints on the allowed graph
structures, we apply these constraints separately for each task. During training and
parsing, the relevant constraint set rules out some of the transitions according to the
parser state. Some constraints are task-specific, others are generic. For example, in
UCCA, a terminal may only have one parent. In AMR, a concept corresponding to a
PropBank frame may only have the core arguments defined for the frame as children. An

3See Supplementary Material for a full listing of features.
4http://spacy.io
5http://fasttext.cc

47

http://spacy.io
http://fasttext.cc

example of a generic constraint is that stack nodes that have been swapped should not
be swapped again.6

4.5 Unified DAG Format

To apply our parser to the four target tasks (§4.3), we convert them into a unified DAG
format, which is inclusive enough to allow representing any of the schemes with very little
loss of information.7

The format consists of a rooted DAG, where the tokens are the terminal nodes. As in
the UCCA format, edges are labeled (but not nodes), and are divided into primary and
remote edges, where the primary edges form a tree (all nodes have at most one primary
parent, and the root has none). Remote edges enable reentrancy, and thus together with
primary edges form a DAG. Figure 4.3 shows examples for converted graphs. Converting
UCCA into the unified format consists simply of removing linkage nodes and edges (see
Figure 4.3a), which were also discarded by Hershcovich et al. (2017).

Converting bilexical dependencies. To convert DM and UD into the unified DAG
format, we add a pre-terminal for each token, and attach the pre-terminals according to
the original dependency edges: traversing the tree from the root down, for each head token
we create a non-terminal parent with the edge label head, and add the node’s dependents
as children of the created non-terminal node (see Figures 4.3c and 4.3d). Since DM
allows multiple roots, we form a single root node, whose children are the original roots.
The added edges are labeled root, where top nodes are labeled top instead. In case of
reentrancy, an arbitrary parent is marked as primary, and the rest as remote (denoted as
dashed edges in Figure 4.3).

Converting AMR. In the conversion from AMR, node labels are dropped. Since
alignments are not part of the AMR graph (see Figure 4.3b), we use automatic alignments
(see §4.7), and attach each node with an edge to each of its aligned terminals.

Named entities in AMR are represented as a subgraph, whose name-labeled root has
a child for each token in the name (see the two name nodes in Figure 4.1b). We collapse
this subgraph into a single node whose children are the name tokens.

6To implement this constraint, we define a swap index for each node, assigned when the node is
created. At initialization, only the root node and terminals exist. We assign the root a swap index of 0,
and for each terminal, its position in the text (starting at 1). Whenever a node is created as a result of
a Node transition, its swap index is the arithmetic mean of the swap indices of the stack top and buffer
head.

7See Supplementary Material for more conversion details.

48

4.6 Multitask Transition-based Parsing

Now that the same model can be applied to different tasks, we can train it in a multitask
setting. The fairly small training set available for UCCA (see §4.7) makes MTL particu-
larly appealing, and we focus on it in this paper, treating AMR, DM and UD parsing as
auxiliary tasks.

Following previous work, we share only some of the parameters (Klerke et al., 2016;
Søgaard and Goldberg, 2016; Bollmann and Søgaard, 2016; Plank, 2016; Braud et al.,
2016; Martínez Alonso and Plank, 2017; Peng et al., 2017a, 2018), leaving task-specific
sub-networks as well. Concretely, we keep the BiLSTM used by TUPA for the main task
(UCCA parsing), add a BiLSTM that is shared across all tasks, and replicate the MLP
(feedforward sub-network) for each task. The BiLSTM outputs (concatenated for the
main task) are fed into the task-specific MLP (see Figure 4.4). Feature embeddings are
shared across tasks.

Unlabeled parsing for auxiliary tasks. To simplify the auxiliary tasks and facilitate
generalization (Bingel and Søgaard, 2017), we perform unlabeled parsing for AMR, DM
and UD, while still predicting edge labels in UCCA parsing. To support unlabeled pars-
ing, we simply remove all labels from the Edge, Remote and Node transitions output
by the oracle. This results in a much smaller number of transitions the classifier has to
select from (no more than 10, as opposed to 45 in labeled UCCA parsing), allowing us
to use no BiLSTMs and fewer dimensions and layers for task-specific MLPs of auxiliary
tasks (see §4.7). This limited capacity forces the network to use the shared parameters
for all tasks, increasing generalization (Martínez Alonso and Plank, 2017).

Parser state …

Classifier

Task-specific BiLSTM Shared BiLSTM

Shared embeddings
After graduation to Paris…

Task-specific MLP

transition

softmax

Figure 4.4: MTL model. Token representations are computed both by a task-specific
and a shared BiLSTM. Their outputs are concatenated with the parser state embedding,
identical to Figure 4.2, and fed into the task-specific MLP for selecting the next transition.
Shared parameters are shown in blue.

49

English French German
tokens # sentences # tokens # sentences # tokens # sentences

train dev test train dev test train dev test train dev test train dev test train dev test
UCCA
Wiki 128444 14676 15313 4268 454 503
20K 12339 506 10047 1558 1324 413 67 67 79894 10059 42366 3429 561 2164
AMR 648950 36521
DM 765025 33964
UD 458277 17062 899163 32347 268145 13814

Table 4.1: Number of tokens and sentences in the training, development and test sets we
use for each corpus and language.

4.7 Experimental Setup

We here detail a range of experiments to assess the value of MTL to UCCA parsing,
training the parser in single-task and multitask settings, and evaluating its performance
on the UCCA test sets in both in-domain and out-of-domain settings.

Data. For UCCA, we use v1.2 of the English Wikipedia corpus (Wiki; Abend and
Rappoport, 2013), with the standard train/dev/test split (see Table 4.1), and the Twenty
Thousand Leagues Under the Sea corpora (20K ; Sulem et al., 2015), annotated in English,
French and German.8 For English and French we use 20K v1.0, a small parallel corpus
comprising the first five chapters of the book. As in previous work (Hershcovich et al.,
2017), we use the English part only as an out-of-domain test set. We train and test on
the French part using the standard split, as well as the German corpus (v0.9), which
is a pre-release and still contains a considerable amount of noisy annotation. Tuning is
performed on the respective development sets.

For AMR, we use LDC2017T10, identical to the dataset targeted in SemEval 2017
(May and Priyadarshi, 2017).9 For SDP, we use the DM representation from the SDP 2016
dataset (Oepen et al., 2016).10 For Universal Dependencies, we use all English, French
and German treebanks from UD v2.1 (Nivre et al., 2017).11 We use the enhanced++
UD representation (Schuster and Manning, 2016) in our English experiments, henceforth
referred to as UD++. We use only the AMR, DM and UD training sets from standard
splits.

While UCCA is annotated over Wikipedia and over a literary corpus, the domains for
AMR, DM and UD are blogs, news, emails, reviews, and Q&A. This domain difference
between training and test is particularly challenging (see §4.9). Unfortunately, none of
the other schemes have available annotation over Wikipedia text.

8http://github.com/huji-nlp/ucca-corpora
9http://catalog.ldc.upenn.edu/LDC2017T10

10http://sdp.delph-in.net/osdp-12.tgz
11http://hdl.handle.net/11234/1-2515

50

http://github.com/huji-nlp/ucca-corpora
http://catalog.ldc.upenn.edu/LDC2017T10
http://sdp.delph-in.net/osdp-12.tgz
http://hdl.handle.net/11234/1-2515

Settings. We explore the following settings: (1) in-domain setting in English, training
and testing on Wiki; (2) out-of-domain setting in English, training on Wiki and testing on
20K; (3) French in-domain setting, where available training dataset is small, training and
testing on 20K; (4) German in-domain setting on 20K, with somewhat noisy annotation.
For MTL experiments, we use unlabeled AMR, DM and UD++ parsing as auxiliary tasks
in English, and unlabeled UD parsing in French and German.12 We also report baseline
results training only the UCCA training sets.

Training. We create a unified corpus for each setting, shuffling all sentences from rel-
evant datasets together, but using only the UCCA development set F1 score as the early
stopping criterion. In each training epoch, we use the same number of examples from
each task–the UCCA training set size. Since training sets differ in size, we sample this
many sentences from each one. The model is implemented using DyNet (Neubig et al.,
2017).13

Multitask
Hyperparameter Single Main Aux Shared
Pre-trained word dim. 300 300
Learned word dim. 200 200
POS tag dim. 20 20
Dependency relation dim. 10 10
Named entity dim. 3 3
Punctuation dim. 1 1
Action dim. 3 3
Edge label dim. 20 20
MLP layers 2 2 1
MLP dimensions 50 50 50
BiLSTM layers 2 2 2
BiLSTM dimensions 500 300 300

Table 4.2: Hyperparameter settings. Middle column shows hyperparameters used for the
single-task architecture, described in §4.4.2, and right column for the multitask archi-
tecture, described in §4.6. Main refers to parameters specific to the main task–UCCA
parsing (task-specific MLP and BiLSTM, and edge label embedding), Aux to parameters
specific to each auxiliary task (task-specific MLP, but no edge label embedding since the
tasks are unlabeled), and Shared to parameters shared among all tasks (shared BiLSTM
and embeddings).

Hyperparameters. We initialize embeddings randomly. We use dropout (Srivastava
et al., 2014) between MLP layers, and recurrent dropout (Gal and Ghahramani, 2016)

12We did not use AMR, DM or UD++ in French and German, as these are only available in English.
13http://dynet.io

51

http://dynet.io

Primary Remote
LP LR LF LP LR LF

English (in-domain)
HAR17 74.4 72.7 73.5 47.4 51.6 49.4
Single 74.4 72.9 73.6 53 50 51.5
AMR 74.7 72.8 73.7 48.7? 51.1 49.9
DM 75.7? 73.9? 74.8? 54.9 53 53.9
UD++ 75? 73.2 74.1? 49 52.7 50.8
AMR + DM 75.6? 73.9? 74.7? 49.9 53 51.4
AMR + UD++ 74.9 72.7 73.8 47.1 50 48.5
DM + UD++ 75.9? 73.9? 74.9? 48 54.8 51.2
All 75.6? 73.1 74.4? 50.9 53.2 52

Table 4.3: Labeled precision, recall and F1 (in %) for primary and remote edges, on the
Wiki test set. ? indicates significantly better than Single. HAR17: Hershcovich et al.
(2017).

between BiLSTM layers, both with p = 0.4. We also use word (α = 0.2), tag (α = 0.2)
and dependency relation (α = 0.5) dropout (Kiperwasser and Goldberg, 2016).14 In
addition, we use a novel form of dropout, node dropout: with a probability of 0.1 at
each step, all features associated with a single node in the parser state are replaced with
zero vectors. For optimization we use a minibatch size of 100, decaying all weights by
10−5 at each update, and train with stochastic gradient descent for N epochs with a
learning rate of 0.1, followed by AMSGrad (Sashank J. Reddi, 2018) for N epochs with
α = 0.001, β1 = 0.9 and β2 = 0.999. We use N = 50 for English and German, and
N = 400 for French. We found this training strategy better than using only one of
the optimization methods, similar to findings by Keskar and Socher (2017). We select
the epoch with the best average labeled F1 score on the UCCA development set. Other
hyperparameter settings are listed in Table 4.2.

Evaluation. We evaluate on UCCA using labeled precision, recall and F1 on primary
and remote edges, following previous work (Hershcovich et al., 2017). Edges in predicted
and gold graphs are matched by terminal yield and label. Significance testing of improve-
ments over the single-task model is done by the bootstrap test (Berg-Kirkpatrick et al.,
2012), with p < 0.05.

52

Primary Remote
LP LR LF LP LR LF

English (out-of-domain)
HAR17 68.7 68.5 68.6 38.6 18.8 25.3
Single 69 69 69 41.2 19.8 26.7
AMR 69.5 69.5 69.5 42.9 20.2 27.5
DM 70.7? 70.7? 70.7? 42.7 18.6 25.9
UD++ 69.6 69.8? 69.7 41.4 22 28.7
AMR + DM 70.7? 70.2? 70.5? 45.8 19.4 27.3
AMR + UD++ 70.2? 69.9? 70? 45.1 21.8 29.4
DM + UD++ 70.8? 70.3? 70.6? 41.6 21.6 28.4
All 71.2? 70.9? 71? 45.1 22 29.6
French (in-domain)
Single 68.2 67 67.6 26 9.4 13.9
UD 70.3 70? 70.1? 43.8 13.2 20.3
German (in-domain)
Single 73.3 71.7 72.5 57.1 17.7 27.1
UD 73.7? 72.6? 73.2? 61.8 24.9? 35.5?

Table 4.4: Labeled precision, recall and F1 (in %) for primary and remote edges, on the
20K test sets. ? indicates significantly better than Single. HAR17: Hershcovich et al.
(2017).

4.8 Results

Table 4.3 presents our results on the English in-domain Wiki test set. MTL with all
auxiliary tasks and their combinations improves the primary F1 score over the single task
baseline. In most settings the improvement is statistically significant. Using all auxiliary
tasks contributed less than just DM and UD++, the combination of which yielded the
best scores yet in in-domain UCCA parsing, with 74.9% F1 on primary edges. Remote
F1 is improved in some settings, but due to the relatively small number of remote edges
(about 2% of all edges), none of the differences is significant. Note that our baseline
single-task model (Single) is slightly better than the current state-of-the-art (HAR17;
Hershcovich et al., 2017), due to the incorporation of additional features (see §4.4.2).

Table 4.4 presents our experimental results on the 20K corpora in the three languages.
For English out-of-domain, improvements from using MTL are even more marked. More-
over, the improvement is largely additive: the best model, using all three auxiliary tasks
(All), yields an error reduction of 2.9%. Again, the single-task baseline is slightly better
than HAR17.

The contribution of MTL is also apparent in French and German in-domain parsing:
3.7% error reduction in French (having less than 10% as much UCCA training data as

14In training, the embedding for a feature value w is replaced with a zero vector with a probability of
α

#(w)+α , where #(w) is the number of occurrences of w observed.

53

20K AMR DM UD
Wiki 1.047 0.895 0.913 0.843
20K 0.949 0.971 0.904
AMR 0.757 0.469
DM 0.754

Table 4.5: L1 distance between dataset word distributions, quantifying domain differences
in English (low is similar).

Primary Remote
UP UR UF UP UR UF

AMR 53.8 15.6 24.2 7.3 5.5 6.3
DM 65 49.2 56 7.4 65.9 13.3
UD++ 82.7 84.6 83.6 12.5 12.7 12.6

Table 4.6: Unlabeled F1 scores between the representations of the same English sentences
(from PTB WSJ), converted to the unified DAG format, and annotated UCCA graphs.

English) and 1% in German, where the training set is comparable in size to the English
one, but is noisier (see §4.7). The best MTL models are significantly better than single-
task models, demonstrating that even a small training set for the main task may suffice,
given enough auxiliary training data (as in French).

4.9 Discussion

Quantifying the similarity between tasks. Task similarity is an important factor in
MTL success (Bingel and Søgaard, 2017; Martínez Alonso and Plank, 2017). In our case,
the main and auxiliary tasks are annotated on different corpora from different domains
(§4.7), and the target representations vary both in form and in content.

To quantify the domain differences, we follow Plank and van Noord (2011) and mea-
sure the L1 distance between word distributions in the English training sets and 20K test
set (Table 4.5). All auxiliary training sets are more similar to 20K than Wiki is, which
may contribute to the benefits observed on the English 20K test set.

As a measure of the formal similarity of the different schemes to UCCA, we use
unlabeled F1 score evaluation on both primary and remote edges (ignoring edge labels).
To this end, we annotated 100 English sentences from Section 02 of the Penn Treebank
Wall Street Journal (PTB WSJ). Annotation was carried out by a single expert UCCA
annotator, and is publicly available.15 These sentences had already been annotated by
the AMR, DM and PTB schemes,16 and we convert their annotation to the unified DAG

15http://github.com/danielhers/wsj
16We convert the PTB format to UD++ v1 using Stanford CoreNLP, and then to UD v2 using Udapi:

http://github.com/udapi/udapi-python.

54

http://github.com/danielhers/wsj
http://github.com/udapi/udapi-python

format.
Unlabeled F1 scores between the UCCA graphs and those converted from AMR, DM

and UD++ are presented in Table 4.6. UD++ is highly overlapping with UCCA, while
DM less so, and AMR even less (cf. Figure 4.3).

Comparing the average improvements resulting from adding each of the tasks as aux-
iliary (see §4.8), we find AMR the least beneficial, UD++ second, and DM the most
beneficial, in both in-domain and out-of-domain settings. This trend is weakly correlated
with the formal similarity between the tasks (as expressed in Table 4.6), but weakly neg-
atively correlated with the word distribution similarity scores (Table 4.5). We conclude
that other factors should be taken into account to fully explain this effect, and propose
to address this in future work through controlled experiments, where corpora of the same
domain are annotated with the various formalisms and used as training data for MTL.

AMR, SDP and UD parsing. Evaluating the full MTL model (All) on the unlabeled
auxiliary tasks yielded 64.7% unlabeled Smatch F1 (Cai and Knight, 2013) on the AMR
development set, when using oracle concept identification (since the auxiliary model does
not predict node labels), 27.2% unlabeled F1 on the DM development set, and 4.9% UAS
on the UD development set. These poor results reflect the fact that model selection
was based on the score on the UCCA development set, and that the model parameters
dedicated to auxiliary tasks were very limited (to encourage using the shared parameters).
However, preliminary experiments using our approach produced promising results on each
of the tasks’ respective English development sets, when treated as a single task: 67.1%
labeled Smatch F1 on AMR (adding a transition for implicit nodes and classifier for node
labels), 79.1% labeled F1 on DM, and 80.1% LAS F1 on UD. For comparison, the best
results on these datasets are 70.7%, 91.2% and 82.2%, respectively (Foland and Martin,
2017; Peng et al., 2018; Dozat et al., 2017).

4.10 Conclusion

We demonstrate that semantic parsers can leverage a range of semantically and syntac-
tically annotated data, to improve their performance. Our experiments show that MTL
improves UCCA parsing, using AMR, DM and UD parsing as auxiliaries. We propose
a unified DAG representation, construct protocols for converting these schemes into the
unified format, and generalize a transition-based DAG parser to support all these tasks,
allowing it to be jointly trained on them.

While we focus on UCCA in this work, our parser is capable of parsing any scheme
that can be represented in the unified DAG format, and preliminary results on AMR,

55

DM and UD are promising (see §4.9). Future work will investigate whether a single
algorithm and architecture can be competitive on all of these parsing tasks, an important
step towards a joint many-task model for semantic parsing.

Acknowledgments

This work was supported by the Israel Science Foundation (grant no. 929/17), by the
HUJI Cyber Security Research Center in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office, and by the Intel Collaborative Research Institute
for Computational Intelligence (ICRI-CI). The first author was supported by a fellowship
from the Edmond and Lily Safra Center for Brain Sciences. We thank Roi Reichart,
Rotem Dror and the anonymous reviewers for their helpful comments.

56

After

L

graduation
P

H ,U

John
A

moved
P

to
R

Paris
C

A

H

A

LR

LA

LA

(a) UCCA

move-01

after

graduate-01

op1

time

person

name

”John”

op1
nam

e
A

R
G

0

city

name

”Paris”

op1
nam

e

ARG2

ARG0

(b) AMR

After graduation , John moved to Paris
ARG2 ARG1

ARG1 top ARG2

ARG1 ARG2

(c) DM

After graduation , John moved to Paris
case punct nsubj

obl
case

root
obl

(d) UD

Figure 4.1: Example graph for each task. Figure 4.1a presents a UCCA graph. The
dashed edge is remote, while the blue node and its outgoing edges represent inter-Scene
linkage. Pre-terminal nodes and edges are omitted for brevity. Figure 4.1b presents an
AMR graph. Text tokens are not part of the graph, and must be matched to concepts
and constants by alignment. Variables are represented by their concepts. Figure 4.1c
presents a DM semantic dependency graph, containing multiple roots: “After”, “moved”
and “to”, of which “moved” is marked as top. Punctuation tokens are excluded from SDP
graphs. Figure 4.1d presents a UD tree. Edge labels express syntactic relations.

57

After

L

graduation
P

H
,U

John
A

moved
P

to
R

Paris
C

A

H

A

(a) UCCA

moved

After

graduation

op

time

John
nam

e
A

R
G

0

Paris

nam
e

ARG2

ARG0

(b) AMR

Afterggraduation ,

root

g John
ARG1

movedg

head

tog Parisg

root

top

he
ad

A
R

G
2

ARG1 ARG1
he

ad

ARG2

A
R

G
2

(c) DM

Afterg

ca
se

graduation

head

obl

,g Johng movedgtog

ca
se

Parisg

head

obl

pu
nc

t nsubj
head

(d) UD

Figure 4.3: Graphs from Figure 4.1, after conversion to the unified DAG format (with
pre-terminals omitted: each terminal drawn in place of its parent). Figure 4.3a presents
a converted UCCA graph. Linkage nodes and edges are removed, but the original graph
is otherwise preserved. Figure 4.3b presents a converted AMR graph, with text tokens
added according to the alignments. Numeric suffixes of op relations are removed, and
names collapsed. Figure 4.3c presents a converted SDP graph (in the DM representation),
with intermediate non-terminal head nodes introduced. In case of reentrancy, an arbitrary
reentrant edge is marked as remote. Figure 4.3d presents a converted UD graph. As in
SDP, intermediate non-terminals and head edges are introduced. While converted UD
graphs form trees, enhanced++ UD graphs may not.

58

Chapter 5

Universal Dependency Parsing with
a General Transition-Based DAG
Parser (Published in CoNLL 2018
Shared Task)

Daniel Hershcovich1,2, Omri Abend2 and Ari Rappoport2
1The Edmond and Lily Safra Center for Brain Sciences
2School of Computer Science and Engineering
Hebrew University of Jerusalem
{danielh,oabend,arir}@cs.huji.ac.il

Abstract

This paper presents our experiments with applying TUPA to the CoNLL 2018 UD shared
task. TUPA is a general neural transition-based DAG parser, which we use to present the
first experiments on recovering enhanced dependencies as part of the general parsing task.
TUPA was designed for parsing UCCA, a cross-linguistic semantic annotation scheme,
exhibiting reentrancy, discontinuity and non-terminal nodes. By converting UD trees and
graphs to a UCCA-like DAG format, we train TUPA almost without modification on the
UD parsing task. The generic nature of our approach lends itself naturally to multitask
learning. Our code is available at https://github.com/CoNLL-UD-2018/HUJI.

59

https://github.com/CoNLL-UD-2018/HUJI

5.1 Introduction

In this paper, we present the HUJI submission to the CoNLL 2018 shared task on Uni-
versal Dependency parsing (Zeman et al., 2018). We focus only on parsing, using the
baseline system, UDPipe 1.2 (Straka et al., 2016; Straka and Straková, 2017) for tok-
enization, sentence splitting, part-of-speech tagging and morphological tagging.

Our system is based on TUPA (Hershcovich et al., 2017, 2018a, see §5.3), a transition-
based UCCA parser. UCCA (Universal Conceptual Cognitive Annotation; Abend and
Rappoport, 2013) is a cross-linguistic semantic annotation scheme, representing events,
participants, attributes and relations in a directed acyclic graph (DAG) structure. UCCA
allows reentrancy to support argument sharing, discontinuity (corresponding to non-
projectivity in dependency formalisms) and non-terminal nodes (as opposed to depen-
dencies, which are bi-lexical). To parse Universal Dependencies (Nivre et al., 2016) using
TUPA, we employ a bidirectional conversion protocol to represent UD trees and graphs
in a UCCA-like unified DAG format (§5.2).

Enhanced dependencies. Our method treats enhanced dependencies1 as part of the
dependency graph, providing the first approach, to our knowledge, for supervised learning
of enhanced UD parsing. Due to the scarcity of enhanced dependencies in UD treebanks,
previous approaches (Schuster and Manning, 2016; Reddy et al., 2017) have attempted
to recover them using language-specific rules. Our approach attempts to learn them
from data: while only a few UD treebanks contain any enhanced dependencies, similar
structures are an integral part of UCCA and its annotated corpora (realized as reentrancy
by remote edges; see §5.2), and TUPA supports them as a standard feature.

As their annotation in UD is not yet widespread and standardized, enhanced depen-
dencies are not included in the evaluation metrics for UD parsing, and so TUPA’s ability
to parse them is not reflected in the official shared task scores. However, we believe these
enhancements, representing case information, elided predicates, and shared arguments
due to conjunction, control, raising and relative clauses, provide richer information to
downstream semantic applications, making UD better suited for text understanding. We
propose an evaluation metric specific to enhanced dependencies, enhanced LAS (§5.5.1),
and use it to evaluate our method.

1http://universaldependencies.org/u/overview/enhanced-syntax.html

60

http://universaldependencies.org/u/overview/enhanced-syntax.html

We

A

were
F

made

D

to

F

feel

P

very
D

welcome

S

.
U

A

A

(a) Example UCCA graph.

We were made to feel very welcome .

nsubj:pass

nsubj:xsubj
nsubj:xsubj

aux:pass

root

mark

xcomp

advmod

xcomp

punct

(b) Example UD graph.

We

nsubj

were

au
x

made
head

to

mark

feel
he

ad

very
advmod

welcome

head

.

punct

xcomp

xcomp

he
ad

nsubj

nsubj

(c) UD graph after conversion to unified DAG format.

Figure 5.1: (a) Example UCCA annotation for the sentence “We were made to feel
very welcome.”, containing a control verb, made. The dashed A edge is a remote edge.
(b) Bilexical graph annotating the same sentence in UD (reviews-077034-0002 from
UD_English-EWT). Enhanced dependencies appear below the sentence. (c) The same UD
graph, after conversion to the unified DAG format. Intermediate non-terminals and head
edges are introduced, to get a UCCA-like structure.

1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj:pass 3:nsubj:pass|5:nsubj:xsubj|7:nsubj:xsubj _

Figure 5.2: Example line from CoNLL-U file with two enhanced dependencies:
5:nsubj:xsubj and 7:nsubj:xsubj.

5.2 Unified DAG Format

To apply TUPA to UD parsing, we convert UD trees and graphs into a unified DAG
format (Hershcovich et al., 2018a). The format consists of a rooted DAG, where the
tokens are the terminal nodes.2 Edges are labeled (but not nodes), and are divided into
primary and remote edges, where the primary edges form a tree (all nodes have at most
one primary parent, and the root has none). Remote edges (denoted as dashed edges
in Figure 5.1) enable reentrancy, and thus form a DAG together with primary edges.
Figure 5.1 shows an example UCCA graph, and a UD graph (containing two enhanced
dependencies) before and after conversion. Both annotate the same sentence from the

2Our conversion code supports full conversion between UCCA and UD, among other representation
schemes, and is publicly available at http://github.com/danielhers/semstr/tree/master/semstr/
conversion.

61

http://github.com/danielhers/semstr/tree/master/semstr/conversion
http://github.com/danielhers/semstr/tree/master/semstr/conversion

he went straight to work and finished the job efficiently and promptly !

nsubj

nsubj

root

advmod mark
advcl

cc

conj

det
obj

advmod

cc

conj

advmod

punct

Figure 5.3: UD graph from reviews-341397-0003 (UD_English-EWT), containing con-
joined predicates and arguments.

I wish all happy holidays , and moreso , E9.1 peace on earth .

nsubj

root

iobj amod

obj punct

punct

cc

cc

orphan

advmod

punct

punct

conj

obj

case

nmod

punct

Figure 5.4: newsgroup-groups.google.com_GuildWars_086f0f64ab633ab3_ENG_20041111_173500-0051

(UD_English-EWT), containing a null node (E9.1) and case information (nmod:on).

English Web Treebank (Silveira et al., 2014)3.

Conversion protocol. To convert UD into the unified DAG format, we add a pre-
terminal for each token, and attach the pre-terminals according to the original dependency
edges: traversing the tree from the root down, for each head token we create a non-
terminal parent with the edge label head, and add the node’s dependents as children
of the created non-terminal node (see Figure 5.1c). This creates a constituency-like
structure, which is supported by TUPA’s transition set (see §5.3.1).

Although the enhanced dependency graph is not necessarily a supergraph of the basic
dependency tree, the graph we convert to the unified DAG format is their union: any
enhanced dependnecies that are distinct from the basic dependency of a node (by having
a different head or universal dependency relation) are converted to remote edges in the
unified DAG format.

To convert graphs in the unified DAG format back into dependency graphs, we collapse
all head edges, determining for each terminal what is the highest non-terminal headed

3https://catalog.ldc.upenn.edu/LDC2012T13

62

https://catalog.ldc.upenn.edu/LDC2012T13

He had a robe that was made back in the ’60s .

nsubj

root

det

obj

nsubj:pass

nsubj:pass

ref

aux:pass

acl:relcl

advmod

case

det

obl

punct

(a) UD.

He had a

de
t

robe

head

obj

head

that was

au
x

made

head
head

back

he
ad

in

case

the

de
t

’60s

head

.

punct

obl

advmod

acl

ns
ub

j head ns
ub

j

nsubj

ref

(b) UD converted to unified DAG for-
mat.

Figure 5.5: (a) reviews-255261-0007 (UD_English-EWT), containing a relative clause,
and (b) the same graph after conversion to the unified DAG format. The cycle is removed
due to the non-terminal nodes introduced in the conversion.

by it, and then attaching the terminals to each other according to the edges among their
headed non-terminals.

Input format. Enhanced dependencies are encoded in the 9th column of the CoNLL-U
format, by an additional head index, followed by a colon and dependency relation. Multi-
ple enhanced dependencies for the same node are separated by pipes. Figure 5.2 demon-
strates this format. Note that if the basic dependency is repeated in the enhanced graph
(3:nsubj:pass in the example), we do not treat it as an enhanced dependency, so that
the converted graph will only contain each edge once. In addition to the UD relations
defined in the basic representations, enhanced dependencies may contain the relation ref,
used for relative clauses. In addition, they may contain more specific relation subtypes,
and optionally also case information.

Language-specific extensions and case information. Dependencies may contain
language-specific relation subtypes, encoded as a suffix separated from the universal re-
lation by a colon. These extensions are ignored by the parsing evaluation metrics, so for
example, the subtyped relation nsubj:pass (Figure 5.1b) is considered the same as the
universal relation nsubj for evaluation purposes. In the enhanced dependencies, these
suffixes may also contain case information, which may be represented by the lemma of an
adposition. For example, the “peace” → “earth” dependency in Figure 5.4 is augmented
as nmod:on in the enhanced graph (not shown in the figure because it shares the universal
relation with the basic dependency).

In the conversion process, we strip any language-specific extensions from both basic
and enhanced dependencies, leaving only the universal relations. Consequently, case
information that might be encoded in the enhanced dependencies is lost, and we do not
handle it in our current system.

63

Ellipsis and null nodes. In addition to enhanced dependencies, the enhanced UD
representation adds null nodes to represented elided predicates. These, too, are ignored
in the standard evaluation. An example is shown in Figure 5.4, where an elided “wish”
is represented by the node E9.1. The elided predicate’s dependents are attached to its
argument “peace” in the basic representation, and the argument itself is attached as an
orphan. In the enhanced representation, all arguments are attached to the null node as
if the elided predicate was present.

While UCCA supports empty nodes without surface realization in the form of implicit
units, previous work on UCCA parsing has removed these from the graphs. We do
the same for UD parsing, dropping null nodes and their associated dependencies upon
conversion to the unified DAG format. We leave parsing elided predicates for future work.

Propagation of conjuncts. Enhanced dependencies contain dependencies between
conjoined predicates and their arguments, and between predicates and their conjoined
arguments or modifiers. While these relations can often be inferred from the basic de-
pendencies, in many cases they require semantic knowledge to parse correctly. For ex-
ample, in Figure 5.3, the enhanced dependencies represent the shared subject (“he”)
among the conjoined predicates (“went” and “finished”), and the conjoined modifiers
(“efficiently” and “promptly”) for the second predicate (“finished”). However, there are
no enhanced dependencies between the first predicate and the second predicate’s modi-
fiers (e.g. “went” → “efficiently”), as semantically only the subject is shared and not the
modifiers.

Relative clauses. Finally, enhanced graphs attach predicates of relative clauses di-
rectly to the antecedent modified by the relative clause, adding a ref dependency between
the antecedent and the relative pronoun. An example is shown in Figure 5.5a. While
these graphs may contain cycles (“robe” ↔ “made” in the example), they are removed
upon conversion to the unified DAG format by the introduction of non-terminal nodes
(see Figure 5.5b).

5.3 General Transition-based DAG Parser

We now turn to describing TUPA (Hershcovich et al., 2017, 2018a), a general transition-
based parser (Nivre, 2003). TUPA uses an extended set of transitions and features
that supports reentrancies, discontinuities and non-terminal nodes. The parser state is
composed of a buffer B of tokens and nodes to be processed, a stack S of nodes currently
being processed, and a graph G = (V,E, `) of constructed nodes and edges, where V is

64

Before Transition Transition After Transition Condition
Stack Buffer Nodes Edges Stack Buffer Nodes Edges Terminal?
S x | B V E Shift S | x B V E −
S | x B V E Reduce S B V E −
S | x B V E NodeX S | x y | B V ∪ {y} E ∪ {(y, x)X} − x 6= root
S | y, x B V E Left-EdgeX S | y, x B V E ∪ {(x, y)X} − x 6∈ w1:n,

y 6= root,
y 6;G x

S | x, y B V E Right-EdgeX S | x, y B V E ∪ {(x, y)X} −
S | y, x B V E Left-RemoteX S | y, x B V E ∪ {(x, y)∗X} −
S | x, y B V E Right-RemoteX S | x, y B V E ∪ {(x, y)∗X} −
S | x, y B V E Swap S | y x | B V E − i(x) < i(y)
[root] ∅ V E Finish ∅ ∅ V E +

Figure 5.6: The transition set of TUPA. We write the stack with its top to the right and
the buffer with its head to the left. (·, ·)X denotes a primary X-labeled edge, and (·, ·)∗X
a remote X-labeled edge. i(x) is the swap index (see §5.3.3). In addition to the specified
conditions, the prospective child in an Edge transition must not already have a primary
parent.

the set of nodes, E is the set of edges, and ` : E → L is the label function, L being the
set of possible labels. Some states are marked as terminal, meaning that G is the final
output. A classifier is used at each step to select the next transition based on features
encoding the parser’s current state. During training, an oracle creates training instances
for the classifier, based on gold-standard annotations.

5.3.1 Transition Set

Given a sequence of tokens w1, . . . , wn, we predict a rooted graph G whose terminals are
the tokens. Parsing starts with the root node on the stack, and the input tokens in the
buffer.

The TUPA transition set, shown in Figure 5.6, includes the standard Shift and
Reduce operations, NodeX for creating a new non-terminal node and an X-labeled
edge, Left-EdgeX and Right-EdgeX to create a new primary X-labeled edge, Left-
RemoteX and Right-RemoteX to create a new remote X-labeled edge, Swap to
handle discontinuous nodes, and Finish to mark the state as terminal.

The RemoteX transitions are not required for parsing trees, but as we treat the
problem as general DAG parsing due to the inclusion of enhanced dependencies, we
include these transitions.

5.3.2 Transition Classifier

To predict the next transition at each step, TUPA uses a BiLSTM with feature embed-
dings as inputs, followed by an MLP and a softmax layer for classification. The model
is illustrated in Figure 5.7. Inference is performed greedily, and training is done with an
oracle that yields the set of all optimal transitions at a given state (those that lead to a
state from which the gold graph is still reachable). Out of this set, the actual transition
performed in training is the one with the highest score given by the classifier, which is

65

Parser state
S

made

B
to feel very wel…

G

We
nsubj

were
aux

head

Classifier

BiLSTM

Embeddings

We were welcome .…

MLP

transition

softmax

Figure 5.7: Illustration of the TUPA model, adapted from Hershcovich et al. (2018a).
Top: parser state (stack, buffer and intermediate graph). Bottom: BiLTSM architecture.
Vector representation for the input tokens is computed by two layers of bidirectional
LSTMs. The vectors for specific tokens are concatenated with embedding and numeric
features from the parser state (for existing edge labels, number of children, etc.), and fed
into the MLP for selecting the next transition.

trained to maximize the sum of log-likelihoods of all optimal transitions at each step.

Features. We use vector embeddings representing the words, lemmas, coarse (univer-
sal) POS tags and fine-grained POS tags, provided by UDPipe 1.2 during test. For train-
ing, we use the gold-annotated lemmas and POS tags. In addition, we use one-character
prefix, three-character suffix, shape (capturing orthographic features, e.g., “Xxxx”) and
named entity type, provided by spaCy;4 punctuation and gap type features (Maier and
Lichte, 2016), and previously predicted edge labels and parser actions. These embeddings
are initialized randomly, except for the word embeddings, which are initialized with the
250K most frequent word vectors from fastText for each language (Bojanowski et al.,
2017),5 pre-trained over Wikipedia and updated during training. We do not use word
embeddings for languages without pre-trained fastText vectors (Ancient Greek, North
Sami and Old French).

To the feature embeddings, we concatenate numeric features representing the node
height, number of (remote) parents and children, and the ratio between the number of
terminals to total number of nodes in the graph G.

Table 5.1 lists all feature used for the classifier. Numeric features are taken as they
are, whereas categorical features are mapped to real-valued embedding vectors. For each
non-terminal node, we select a head terminal for feature extraction, by traversing down
the graph according to a priority order on edge labels (otherwise selecting the leftmost
child). The priority order is: parataxis, conj, advcl, xcomp

4http://spacy.io
5http://fasttext.cc

66

http://spacy.io
http://fasttext.cc

Nodes
s0 wmtuepT#^$xhqyPCIEMN
s1 wmtueT#^$xhyN
s2 wmtueT#^$xhy
s3 wmtueT#^$xhyN
b0 wmtuT#^$hPCIEMN
b1, b2, b3 wmtuT#^$
s0l, s0r, s1l, s1r,
s0ll, s0lr, s0rl, s0rr,
s1ll, s1lr, s1rl, s1rr

wme#^$

s0L, s0R, s1L,
s1R, b0L, b0R

wme#^$

Edges
s0 → s1, s0 → b0,
s1 → s0, b0 → s0

x

s0 → b0, b0 → s0 e
Past actions
a0, a1 eA
Global node ratio

Table 5.1: Transition classifier features.
si: stack node i from the top. bi: buffer node i.
xl, xr (xL, xR): x’s leftmost and rightmost children (parents). w: head terminal text.
m: lemma. u: coarse (universal) POS tag. t: fine-grained POS tag. h: node’s height. e:
label of its first incoming edge. p: any separator punctuation between s0 and s1. q: count
of any separator punctuation between s0 and s1. x: numeric value of gap type (Maier
and Lichte, 2016). y: sum of gap lengths. P, C, I, E, and M: number of parents, children,
implicit children, remote children, and remote parents. N: numeric value of the head
terminal’s named entity IOB indicator. T: named entity type. #: word shape (capturing
orthographic features, e.g. ”Xxxx” or ”dd”). ^: one-character prefix. $: three-character
suffix.
x→ y refers to the existing edge from x to y. x is an indicator feature, taking the value
of 1 if the edge exists or 0 otherwise, e refers to the edge label, and ai to the transition
taken i+ 1 steps ago.
A refers to the action type (e.g. shift/right-edge/node), and e to the edge label
created by the action.
node ratio is the ratio between non-terminals and terminals (Hershcovich et al., 2017).

5.3.3 Constraints

During training and parsing, we apply constraints on the parser state to limit the possible
transitions to valid ones.

A generic constraint implemented in TUPA is that stack nodes that have been swapped
should not be swapped again (Hershcovich et al., 2018a). To implement this constraint,
we define a swap index for each node, assigned when the node is created. At initialization,
only the root node and terminals exist. We assign the root a swap index of 0, and for
each terminal, its position in the text (starting at 1). Whenever a node is created as a
result of a Node transition, its swap index is the arithmetic mean of the swap indices of
the stack top and buffer head.

In addition, we enforce UD-specific constraints, resulting from the nature of the con-
verted DAG format: every non-terminal node must have a single outgoing head edge:
once it has one, it may not get another, and until it does, the node may not be reduced.

67

5.4 Training details

The model is implemented using DyNet v2.0.3 (Neubig et al., 2017).6 Unless otherwise
noted, we use the default values provided by the package. We use the same hyperpa-
rameters as used in previous experiments on UCCA parsing (Hershcovich et al., 2018a),
without any hyperparameter tuning on UD treebanks.

Hyperparameter Value
Pre-trained word dim. 300
Lemma dim. 200
Coarse (universal) POS tag dim. 20
Fine-grained POS tag dim. 20
Named entity dim. 3
Punctuation dim. 1
Shape dim. 3
Prefix dim. 2
Suffix dim. 3
Action dim. 3
Edge label dim. 20
MLP layers 2
MLP dimensions 50
BiLSTM layers 2
BiLSTM dimensions 500

Table 5.2: Hyperparameter settings.

5.4.1 Hyperparameters

We use dropout (Srivastava et al., 2014) between MLP layers, and recurrent dropout
(Gal and Ghahramani, 2016) between BiLSTM layers, both with p = 0.4. We also use
word, lemma, coarse- and fine-grained POS tag dropout with α = 0.2 (Kiperwasser
and Goldberg, 2016): in training, the embedding for a feature value w is replaced with
a zero vector with a probability of α

#(w)+α
, where #(w) is the number of occurrences

of w observed. In addition, we use node dropout (Hershcovich et al., 2018a): with a
probability of 0.1 at each step, all features associated with a single node in the parser
state are replaced with zero vectors. For optimization we use a minibatch size of 100,
decaying all weights by 10−5 at each update, and train with stochastic gradient descent
for 50 epochs with a learning rate of 0.1, followed by AMSGrad (Sashank J. Reddi, 2018)
for 250 epochs with α = 0.001, β1 = 0.9 and β2 = 0.999. We found this training strategy
better than using only one of the optimization methods, similar to findings by Keskar
and Socher (2017). We select the epoch with the best LAS-F1 on the development set.
Other hyperparameter settings are listed in Table 5.2.

5.4.2 Small Treebanks

For corpora with less than 100 training sentences, we use 750 epochs of AMSGrad instead
of 250. For corpora with no development set, we use 10-fold cross-validation on the

6http://dynet.io

68

http://dynet.io

training set, each time splitting it to 80% training, 10% development and 10% validation.
We perform the normal training procedure on the training and development subsets, and
then select the model from the fold with the best LAS-F1 on the corresponding validation
set.

5.4.3 Multilingual Model

For the purpose of parsing languages with no training data, we use a delexicalized mul-
tilingual model, trained on the shuffled training sets from all corpora, with no word,
lemma, fine-grained tag, prefix and suffix features. We train this model for two epochs
using stochastic gradient descent with a learning rate of 0.1 (we only trained this many
epochs due to time constraints).

5.4.4 Out-of-domain Evaluation

For test treebanks without corresponding training data, but with training data in the
same language, during testing we use the model trained on the largest training treebank
in the same language.

5.5 Results

Official evaluation was done on the TIRA online platform (Potthast et al., 2014). Our
system (named “HUJI”) ranked 24th in the LAS-F1 ranking (with an average of 53.69
over all test treebanks), 23rd by MLAS (average of 44.6) and 21st by BLEX (average of
48.05). Since our system only performs dependency parsing and not other pipeline tasks,
we henceforth focus on LAS-F1 (Nivre and Fang, 2017) for evaluation.

After the official evaluation period ended, we discovered several bugs in the conversion
between the CoNLL-U format and the unified DAG format, which is used by TUPA for
training and is output by it (see §5.2). We did not re-train TUPA on the training
treebanks after fixing these bugs, but we did re-evaluate the already trained models on
all test treebanks, and used the fixed code for converting their output to CoNLL-U. This
yielded an unofficial average test LAS-F1 of 58.48, an improvement of 4.79 points over
the official average score. In particular, for two test sets, ar_padt and gl_ctg, TUPA
got a zero score in the official evaluation due to a bug with the treatment of multi-token
words. These went up to 61.9 and 71.42, respectively. We also evaluated the trained
TUPA models on all available development treebanks after fixing the bugs.

Table 5.3 presents the averaged scores on the shared task test sets, and Figure 5.8
the (official and unofficial) LAS-F1 scores obtained by TUPA on each of the test and

69

TUPA (official) TUPA (unofficial) UDPipe (baseline)

All treebanks 53.69 58.48 65.80
Big treebanks 62.07 67.36 74.14
PUD treebanks 56.35 56.82 66.63
Small treebanks 36.74 41.19 55.01
Low-resource 8.53 12.68 17.17

Table 5.3: Aggregated test LAS-F1 scores for our system (TUPA) and the baseline system
(UDPipe 1.2).

development treebanks.

5.5.1 Evaluation on Enhanced Dependencies

Since the official evaluation ignores enhanced dependencies, we evaluate them separately
using a modified version of the shared task evaluation script7. We calculate the enhanced
LAS, identical to the standard LAS except that the set of dependencies in both gold
and predicted graphs are the enhanced dependencies instead of the basic dependencies:
ignoring null nodes and any enhanced dependency sharing a head with a basic one, we
align the words in the gold graph and the system’s graph as in the standard LAS, and
define

P =
#correct
#system

, R =
#correct

#gold
, F1 = 2 · P ·R

P +R
.

Table 5.4 lists the enhanced LAS precision, recall and F1 score on the test treebanks
with any enhanced dependencies, as well as the percentage of enhanced dependencies in
each test treebank, calculated as 100 · #enhanced

#enhanced+#words .
Just as remote edges in UCCA parsing are more challenging than primary edges

(Hershcovich et al., 2017), parsing enhanced dependencies is a harder task than standard
UD parsing, as the scores demonstrate. However, TUPA learns them successfully, getting
as much as 56.55 enhanced LAS-F1 (on the Polish LFG test set).

5.5.2 Ablation Experiments

The TUPA transition classifier for some of the languages uses named entity features
calculated by spaCy.8 For German, Spanish, Portuguese, French, Italian, Dutch and
Russian, the spaCy named entity recognizer was trained on Wikipedia (Nothman et al.,
2013). However, the English model was trained on OntoNotes9, which is in fact not among

7https://github.com/CoNLL-UD-2018/HUJI/blob/master/tupa/scripts/conll18_ud_eval.py
8https://spacy.io/api/annotation
9https://catalog.ldc.upenn.edu/LDC2013T19

70

https://github.com/CoNLL-UD-2018/HUJI/blob/master/tupa/scripts/conll18_ud_eval.py
https://spacy.io/api/annotation
https://catalog.ldc.upenn.edu/LDC2013T19

Enhanced LAS % EnhancedTreebank P R F1
ar_padt 28.51 16.24 20.69 5.30
cs_cac 54.94 35.69 43.27 7.57
cs_fictree 48.78 18.53 26.85 4.30
cs_pdt 49.46 26.47 34.48 4.61
nl_alpino 56.04 50.81 53.30 4.80
nl_lassysmall 49.71 51.30 50.49 4.13
en_ewt 57.36 52.05 54.58 4.36
en_pud 58.99 50.00 54.13 5.14
fi_tdt 40.20 31.37 35.24 7.34
lv_lvtb 31.76 18.70 23.54 4.12
pl_lfg 59.19 54.13 56.55 2.61
sk_snk 37.28 21.61 27.36 3.91
sv_pud 45.40 39.58 42.29 6.36
sv_talbanken 50.15 43.20 46.42 6.89

Table 5.4: TUPA’s enhanced LAS precision, recall and F1 per test treebank with any
enhanced dependencies, and percentage of enhanced dependencies in test treebank.

the additional resources allowed by the shared task organizers. To get a fair evaluation
and to quantify the contribution of the NER features, we re-trained TUPA on the English
EWT (en_ewt) training set with the same hyperparameters as in our submitted model,
just without these features. As Table 5.5 shows, removing the NER features (−NER)
only slightly hurts the performance, by 0.28 LAS-F1 points on the test treebank, and
0.63 on the development treebank.

As further ablation experiments, we tried removing POS features, pre-trained word
embeddings, and remote edges (the latter enabling TUPA to parse enhanced dependen-
cies). Removing the POS features does hurt performance to a larger degree, by 2.87
LAS-F1 points on the test set, while removing the pre-trained word embeddings even
slightly improves the performance. Removing remote edges and transitions from TUPA
causes a very small decrease in LAS-F1, and of course enhanced dependencies can then
no longer be produced at all.

5.6 Conclusion

We have presented the HUJI submission to the CoNLL 2018 shared task on parsing
Universal Dependencies, based on TUPA, a general transition-based DAG parser. Using
a simple conversion protocol to convert UD into a unified DAG format, training TUPA
as-is on the UD treebanks yields results close to the UDPipe baseline for most treebanks
in the standard evaluation. While other systems ignore enhanced dependencies, TUPA

71

LAS-F1 Enhanced LAS-F1
Model Test Dev Test Dev
Original 72.10 72.44 54.58 57.13
−NER 71.82 71.81 55.31 54.65
−POS 69.23 69.54 53.78 49.12
−Embed. 72.33 72.55 56.26 54.54
−Remote 72.08 72.32 0.00 0.00

Table 5.5: Ablation LAS-F1 and Enhanced LAS-F1 on the English EWT development and
test set. NER: named entity features. POS: part-of-speech tag features (both universal
and fine-grained). Embed.: external pre-trained word embeddings (fastText). Remote:
remote edges and transitions in TUPA.

learns to produce them too as part of the general dependency parsing process. We believe
that with hyperparameter tuning and more careful handling of cross-lingual and cross-
domain parsing, TUPA can be competitive on the standard metrics too.

Furthermore, the generic nature of our parser, which supports many representation
schemes, as well as domains and languages, will allow improving performance by multitask
learning (cf. Hershcovich et al., 2018a), which we plan to explore in future work.

Acknowledgments

This work was supported by the Israel Science Foundation (grant no. 929/17) and by
the HUJI Cyber Security Research Center in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office.

72

af
_

af
ri

b
oo

m
s

gr
c_

p
er

se
us

gr
c_

pr
oi

el

ar
_

pa
dt

hy
_

ar
m

td
p

eu
_

b
dt

br
_

ke
b

bg
_

bt
b

bx
r_

b
dt

ca
_

an
co

ra

hr
_

se
t

cs
_

ca
c

cs
_

fic
tr

ee

cs
_

p
dt

cs
_

pu
d

da
_

dd
t

nl
_

al
pi

no
nl

_
la

ss
ys

m
al

l

en
_

ew
t

en
_

gu
m

en
_

lin
es

en
_

pu
d

et
_

ed
t

fo
_

of
t

fi_
ft

b

fi_
pu

d

fi_
td

t

fr
_

gs
d

71
.7
8

1.
92

1.
89

0

7.
59

56
.6
3

7.
29

75
.0
3

8.
17

77
.5
2

75
.7
7

74
.3

70
.8
7

72
.0
3

68
.5

66
.7
7

69
.9
2

66
.2

72

66
.0
5

67
.3
4

74
.1
2

67
.4
5

15
.4
4

72
.3
5

68
.4
7

66
.1
9

74
.9
7

71
.8
5

52
.9
7

61
.3

61
.9

22
.7
8

56
.8
2

10
.1
8

75
.0
5

8.
42

77
.5
3

75
.8
5

73
.9
2

70
.8
1

71
.8
7

68
.3
7

66
.8
4

70
.2
2

67
.4
5 72
.1

66
.0
5

67
.4

74
.4

67
.5
8

23
.3
9

72
.3
6

68
.4
7

66
.3
4

74
.9
8

72
.6
5

52
.3
1

62
.1
2

62
.3
3

57
.8
5

75
.1
4

77
.6
5

75
.2
4

75
.4
4

71
.5
7

72
.7
2

66
.6
4 71

.5
2

60
.1
6

72
.4
4

67
.8
7

68
.2
2

69
.8
6

72
.1
3

65
.4
5

80
.4
2

Test (official)
Test (unofficial)
Development

fr
_

se
qu

oi
a

fr
_

sp
ok

en

gl
_

ct
g

gl
_

tr
ee

ga
l

de
_

gs
d

go
t_

pr
oi

el

el
_

gd
t

he
_

ht
b

hi
_

hd
tb

hu
_

sz
eg

ed

zh
_

gs
d

id
_

gs
d

ga
_

id
t

it
_

is
dt

it
_

p
os

tw
it

a

ja
_

gs
d

ja
_

m
od

er
n

kk
_

kt
b

ko
_

gs
d

ko
_

ka
is

t

km
r_

m
g

la
_

it
tb

la
_

pe
rs

eu
s

la
_

pr
oi

el

lv
_

lv
tb

p
cm

_
ns

c
sm

e_
gi

el
la

77
.7
2

60
.6
5

0

58
.6
6

65
.2
4

57
.6
9

75
.4
9

54
.0
2

84
.5
4

50
.6
2

50
.7

70
.7
4

53
.3

85
.8
9

62
.5
6

57
.3
6

8.
26

7.
95

58
.6

69
.1
5

12
.8
9

73
.8
5

30
.3
5

52
.9
6

55
.1
9

2.
15

6.
69

77
.7
4

60
.6
6

71
.4
2

48
.5
8

65
.3
2

57
.7
1

75
.4
9

54
.0
4

84
.6
2

50
.6
7

50
.7
5

70
.8
5

53
.5

85
.9
2

62
.5
6

59
.5
6

10
.0
4

12
.1
2

58
.7
2

69
.1
6

13
.0
1

74
.0
2

30
.6
2

52
.9
7

55
.1
3

8.
99

31
.4
6

77
.9
5

58
.7
4

71
.7
9

68
.3

57
.8
4

74
.5
9

56
.9
4

84
.1
6

53
.0
1

48
.7
9

70
.3
5

85
.4
8

62
.1
5

63
.2
6

53
.8
3

70
.3
4

69
.1
7

54
.0
4

56
.9
2

no
_

bo
km

aa
l

no
_

ny
no

rs
k

no
_

ny
no

rs
kl

ia
fr

o_
sr

cm
f

cu
_

pr
oi

el

fa
_

se
ra

ji

pl
_

lf
g

pl
_

sz
pt

_
b

os
qu

e

ro
_

rr
t

ru
_

sy
nt

ag
ru

s

ru
_

ta
ig

a

sr
_

se
t

sk
_

sn
k

sl
_

ss
j

sl
_

ss
t

es
_

an
co

ra

sv
_

lin
es

sv
_

pu
d

sv
_

ta
lb

an
ke

n

th
_

pu
d

tr
_

im
st

uk
_

iu

hs
b_

uf
al

ur
_

ud
tb

ug
_

ud
t

vi
_

vt
b

80
.8
5

70
.5
8

34
.9
3

2.
88

61
.3

75
.7
2

76
.5
8

71
.6
8

74
.3
4 78

.9
9

69
.2

33
.1
7

70
.7
3

71
.9
7

68
.3
1

40
.0
9

75
.7
4

68
.0
2

62
.3
8

70
.2
7

0.
36

43
.8
2

71
.2
4

14
.9
1

72
.2
7

45
.6
3

36
.4
8

80
.9
8

70
.8
1

35
.1
3

75
.0
4

61
.3
3

75
.7
7

76
.6
1

71
.7
1

74
.3
5 79

.0
5

69
.2
1

48
.9
2

70
.7
7

71
.9
3

68
.3
2

40
.1
3

75
.7
4

68
.1
1

62
.8
1

70
.6
6

0.
23

43
.9
3

71
.3
9

15
.0
1

72
.5

45
.6
7

36
.5

81
.8
4

70
.8
4 74
.3
6

61

75
.9
6

78
.1
3

72
.3
1 76
.4 79

.3
3

68
.2
4 72
.3
2

72
.3
1

69
.2
8

75
.3
3

68
.2
8

68
.2
8

44
.3
3

73
.8

72
.7
1

46
.2

39
.4
4

Figure 5.8: TUPA’s LAS-F1 per treebank: official and unofficial test scores, and devel-
opment scores (where available).

73

Chapter 6

Content Differences in Syntactic and
Semantic Representations
(Published in NAACL-HLT 2019)

Daniel Hershcovich1,2, Omri Abend2 and Ari Rappoport2
1The Edmond and Lily Safra Center for Brain Sciences
2School of Computer Science and Engineering
Hebrew University of Jerusalem
{danielh,oabend,arir}@cs.huji.ac.il

Abstract

Syntactic analysis plays an important role in semantic parsing, but the nature of this
role remains a topic of ongoing debate. The debate has been constrained by the scarcity
of empirical comparative studies between syntactic and semantic schemes, which hin-
ders the development of parsing methods informed by the details of target schemes and
constructions. We target this gap, and take Universal Dependencies (UD) and UCCA
as a test case. After abstracting away from differences of convention or formalism, we
find that most content divergences can be ascribed to: (1) UCCA’s distinction between
a Scene and a non-Scene; (2) UCCA’s distinction between primary relations, secondary
ones and participants; (3) different treatment of multi-word expressions, and (4) different
treatment of inter-clause linkage. We further discuss the long tail of cases where the two
schemes take markedly different approaches. Finally, we show that the proposed compar-
ison methodology can be used for fine-grained evaluation of UCCA parsing, highlighting
both challenges and potential sources for improvement. The substantial differences be-
tween the schemes suggest that semantic parsers are likely to benefit downstream text

74

understanding applications beyond their syntactic counterparts.

6.1 Introduction

Semantic representations hold promise due to their ability to transparently reflect distinc-
tions relevant for text understanding applications. For example, syntactic representations
are usually sensitive to distinctions based on POS (part of speech), such as between com-
pounds and possessives. Semantic schemes are less likely to make this distinction since
a possessive can often be paraphrased as a compound and vice versa (e.g., “US presi-
dent”/“president of the US”), but may distinguish different senses of possessives (e.g.,
“some of the presidents” and “inauguration of the presidents”).

Nevertheless, little empirical study has been done on what distinguishes semantic
schemes from syntactic ones, which are still in many cases the backbone of text under-
standing systems. Such studies are essential for (1) determining whether and to what
extent semantic methods should be adopted for text understanding applications; (2)
defining better inductive biases for semantic parsers, and allowing better use of informa-
tion encoded in syntax; (3) pointing at semantic distinctions unlikely to be resolved by
syntax.

The importance of such an empirical study is emphasized by the ongoing discussion
as to what role syntax should play in semantic parsing, if any (Swayamdipta et al., 2018;
Strubell et al., 2018; He et al., 2018; Cai et al., 2018). See §6.8.

This paper aims to address this gap, focusing on content differences. As a test case,
we compare relatively similar schemes (§6.2): the syntactic Universal Dependencies (UD;
Nivre et al., 2016), and the semantic Universal Conceptual Cognitive Annotation (UCCA;
Abend and Rappoport, 2013).

We UCCA-annotate the entire web reviews section of the UD EWT corpus (§6.3),
and develop a converter to assimilate UD and UCCA, which use formally different graphs
(§6.4). We then align their nodes, and identify which UCCA categories match which UD
relations, and which are unmatched.

Most content differences are due to (§6.5):

1. UCCA’s distinction between words and phrases that evoke Scenes (events) and ones
that do not. For example, eventive and non-eventive nouns are treated differently
in UCCA, but similarly in UD.

2. UCCA’s distinction between primary relations, secondary relations and Partici-
pants, in contrast to UD’s core/non-core distinction.

75

3. Different treatment of multi-word expressions (MWEs), where UCCA has a stronger
tendency to explicitly mark them.

4. UCCA’s conflation of several syntactic realizations of inter-clause linkage, and dis-
ambiguation of other cases that UD treats similarly.

We show that the differences between the schemes are substantial, and suggest that
UCCA parsing in particular and semantic parsing in general are likely to benefit down-
stream text understanding applications. For example, only 72.9% of UCCA Participants
are UD syntactic arguments, i.e., many semantic participants cannot be recovered from
UD.1 Our findings are relevant to other semantic representations, given their significant
overlap in content (Abend and Rappoport, 2017).

A methodology for comparing syntactic and semantic treebanks can also support fine-
grained error analysis of semantic parsers, as illustrated by Szubert et al. (2018) for AMR
(Banarescu et al., 2013). To demonstrate the utility of our comparison methodology, we
perform fine-grained error analysis on UCCA parsing, according to UD relations (§6.6).
Results highlight challenges for current parsing technology, and expose cases where UCCA
parsers may benefit from modeling syntactic structure more directly.2

6.2 Representations

The conceptual and formal similarity between UD and UCCA can be traced back to
their shared design principles: both are designed to be applicable across languages and
domains, to enable rapid annotation and to support text understanding applications. This
section provides a brief introduction to each of the schemes, whereas the next sections
discuss their content in further detail.3

UCCA is a semantic annotation scheme rooted in typological and cognitive linguistic
theory. It aims to represent the main semantic phenomena in text, abstracting away
from syntactic forms. Shown to be preserved remarkably well across translations (Sulem
et al., 2015), it has been applied to improve text simplification (Sulem et al., 2018b), and
text-to-text generation evaluation (Birch et al., 2016; Choshen and Abend, 2018; Sulem
et al., 2018a).

Formally, UCCA structures are directed acyclic graphs (DAGs) whose nodes (or units)
correspond either to words, or to elements viewed as a single entity according to some

1This excludes cases of shared argumenthood, which are partially covered by enhanced UD. See §6.4.1.
2Our conversion and analysis code is public available at https://github.com/danielhers/synsem.
3See Supplementary Material for a definition of each category in both schemes, and their abbrevia-

tions.

76

https://github.com/danielhers/synsem

Participant A
Center C
Adverbial D
Elaborator E
Function F
Ground G
Parallel Scene H

Linker L
Connector N
Process P
Quantifier Q
Relator R
State S
Time T

Table 6.1: Legend of UCCA categories (edge labels).

semantic or cognitive consideration. Edges are labeled, indicating the role of a child in
the relation the parent represents. Figure 6.1 shows a legend of UCCA abbreviations. A
Scene is UCCA’s notion of an event or a frame, and is a description of a movement, an
action or a state which persists in time. Every Scene contains one primary relation, which
can be either a Process or a State. Scenes may contain any number of Participants, a
category which also includes abstract participants and locations. They may also contain
temporal relations (Time), and secondary relations (Adverbials), which cover semantic
distinctions such as manner, modality and aspect.4

Scenes may be linked to one another in several ways. First, a Scene can provide
information about some entity, in which case it is marked as an Elaborator. This often
occurs in the case of participles or relative clauses. For example, “(child) who went to
school” is an Elaborator Scene in “The child who went to school is John”. A Scene
may also be a Participant in another Scene. For example, “John went to school” in the
sentence: “He said John went to school”. In other cases, Scenes are annotated as Parallel
Scenes (H), which are flat structures and may include a Linker (L), as in: “WhenL [he
arrives]H , [he will call them]H”.

Non-Scene units are headed by units of the category Center, denoting the type of entity
or thing described by the whole unit. Elements in non-Scene units include Quantifiers
(such as “dozens of people”) and Connectors (mostly coordinating conjunctions). Other
modifiers to the Center are marked as Elaborators.

UCCA distinguishes primary edges, corresponding to explicit relations, from remote
edges, which allow for a unit to participate in several super-ordinate relations. See ex-
ample in Figure 6.1. Primary edges form a tree, whereas remote edges (dashed) enable
reentrancy, forming a DAG.

UD is a syntactic dependency scheme used in many languages, aiming for cross-linguistically
consistent and coarse-grained treebank annotation. Formally, UD uses bi-lexical trees,
with edge labels representing syntactic relations.

4Despite the similar terminology, UCCA Adverbials are not necessarily adverbs syntactically.

77

After

L

graduation
P

H
,U

John

A

moved
P

to
R

Paris
C

A

H

A

Figure 6.1: UCCA graph. Dashed: remote edge.

One aspect of UD similar to UCCA is its preference of lexical (rather than functional)
heads. For example, in auxiliary verb constructions (e.g., “is eating”), UD marks the
lexical verb (eating) as the head, while other dependency schemes may select the auxiliary
is instead. While the approaches are largely inter-translatable (Schwartz et al., 2012),
lexical head schemes are more similar in form to semantic schemes, such as UCCA and
semantic dependencies (Oepen et al., 2016).

Being a dependency representation, UD is structurally underspecified in an important
way: it is not possible in UD to mark the distinction between an element modifying the
head of the phrase and the same element modifying the whole phrase (de Marneffe and
Nivre, 2019).

An example UD tree is given in Figure 6.2. UD relations will be written in typewriter
font.

After graduation , John moved to Paris
case punct nsubj

obl
case

root
obl

Figure 6.2: UD tree.

6.3 Shared Gold-standard Corpus

We annotate 723 English passages (3,813 sentences; 52,721 tokens), comprising the web
reviews section of the English Web Treebank (EWT; Bies et al., 2012). Text is annotated
by two UCCA annotators according to v2.0 of the UCCA guidelines5 and cross-reviewed.
As these sentences are included in the UD English_EWT treebank, this is a shared gold-
standard UCCA and UD annotated corpus.6 We use the standard train/development/test
split, shown in Table 6.2.

5http://bit.ly/ucca_guidelines_v2
6Our data is available at https://github.com/UniversalConceptualCognitiveAnnotation/UCCA_

English-EWT.

78

http://bit.ly/ucca_guidelines_v2
https://github.com/UniversalConceptualCognitiveAnnotation/UCCA_English-EWT
https://github.com/UniversalConceptualCognitiveAnnotation/UCCA_English-EWT

Train Dev Test
Passages 347 192 184
Sentences 2,723 554 535
Tokens 44,804 5,394 5,381

Table 6.2: Data split for the shared gold-standard corpus.

6.4 Comparison Methodology

To facilitate comparison between UCCA and UD, we first assimilate the graphs by ab-
stracting away from formalism differences, obtaining a similar graph format for both
schemes. We then match pairs of nodes in the converted UD and UCCA trees if they
share all terminals in their yields.

UD annotates bi-lexical dependency trees, while UCCA graphs contain non-terminal
nodes. In §6.4.1, we outline the unified DAG converter by Hershcovich et al. (2018a,b),7

which we use to reach a common format. In §6.4.2, we describe a number of extensions
to the converter, which abstract away from further non-content differences.

Afterg
ca

se

graduation

head

obl

,g Johng movedg tog
ca

se

Parisg

head

obl

head

pu
nc

t nsubj

head

Figure 6.3: Converted UD tree. Non-terminals and head edges are introduced by the
unified DAG converter.

6.4.1 Basic Conversion

Figure 6.3 presents the same tree from Figure 6.2 after conversion. The converter adds
one pre-terminal per token, and attaches them according to the original dependency tree:
traversing it from the root, for each head it creates a non-terminal parent with the edge
label head, and adds the dependents as children of the created non-terminal. Relation
subtypes are stripped, leaving only universal relations. For example, the language-specific
definite article label det:def is replaced by the universal det.

Reentrancies. Remote edges in UCCA enable reentrancy, forming a DAG together
with primary edges. UD allows reentrancy when including enhanced dependencies (Schus-
ter and Manning, 2016),8 which form (bi-lexical) graphs, representing phenomena such

7https://github.com/huji-nlp/semstr
8https://universaldependencies.org/u/overview/enhanced-syntax.html

79

https://github.com/huji-nlp/semstr
https://universaldependencies.org/u/overview/enhanced-syntax.html

as predicate ellipsis (e.g., gapping), and shared arguments due to coordination, control,
raising and relative clauses.

UCCA is more inclusive in its use of remote edges, and accounts for the entire class of
implicit arguments termed Constructional Null Instantiation in FrameNet (Ruppenhofer
et al., 2016). For example, in “The Pentagon is bypassing official US intelligence channels
[...] in order to create strife” (from EWT), remote edges mark Pentagon as a shared
argument of bypassing and create. Another example is “if you call for an appointment
[...] so you can then make one”, where a remote edge in UCCA indicates that one refers
to appointment. Neither is covered by enhanced UD.

In order to facilitate comparison, we remove remote edges and enhanced dependencies
in the conversion process. We thus compare basic UD and UCCA trees, deferring a
comparison of UCCA and enhanced UD to future work.

6.4.2 Extensions to the Converter

We extend the unified DAG converter to remove further non-content differences.

Unanalyzable units. An unanalyzable phrase is represented in UCCA as a single unit
covering multiple terminals. In multi-word expressions (MWEs) in UD, each word after
the first is attached to the previous word, with the flat, fixed or goeswith relations
(depending on whether the expression is grammaticalized, or split by error). We remove
edges of these relations and join the corresponding pre-terminals to one unit.

Promotion of conjunctions. The basic conversion generally preserves terminal yields:
the set of terminals spanned by a non-terminal is the same as the original dependency
yield of its head terminal (e.g., in Figure 6.3, the yield of the non-terminal headed by
graduation is “After graduation”, the same as that of “graduation” in Figure 6.2).

Since UD attaches subordinating and coordinating conjunctions to the subsequent
conjunct, this results in them being positioned in the same conjunct they relate (e.g.,
After will be included in the first conjunct in “After arriving home, John went to sleep”;
and will be included in the second conjunct in “John and Mary”). In contrast, UCCA
places conjunctions as siblings to their conjuncts (e.g., “[After] [arriving home], [John
went to sleep]” and “[John] [and] [Mary]”).

To abstract away from these convention differences, we place coordinating and subor-
dinating conjunctions (i.e., cc-labeled units, and mark-labeled units with an advcl head
such as when, if, after) as siblings of their conjuncts.

80

No
A A

∣∣P A
∣∣S C D E F G H L N P Q R S T Match

acl 58 1 4 249 1 48 6 1 1 409
advcl 14 12 2 2 6 512 4 11 423
advmod 225 1 69 1778 332 27 135 14 258 2 2 15 44 9 368 273
amod 25 134 647 837 1 28 7 130 3 269 25 176
appos 21 39 2 34 18 8 33
aux 384 2 1335 2 1 1 17
case 11 31 27 25 123 213 26 11 1 2629 154 1 262
cc 8 4 1 4 1 1 1567 381 6 12 52
ccomp 345 1 1 36 2 1 1 166
compound 225 116 67 586 21 2 32 19 1 12 24 683
conj 10 449 4 5 1 1262 1 6 2 10 497
cop 1 1312 1 9 10 178 7
csubj 13 3 46
det 10 17 119 440 2963 1 129 16 1 124
discourse 1 2 1 25 29 27 16 5 19
expl 21 1 98 17 3
iobj 131 1 1 10
list 3 7 2 1 27 1 6
mark 9 7 1 531 1 654 407 1 5 143
nmod 844 1 1 20 9 786 8 4 12 1 1 20 2 2 11 27 488
nsubj 4296 7 21 25 3 2 55 1 5 61 58 1 80 14 4 247
nummod 2 33 12 17 4 4 334 64
obj 1845 1 54 21 6 11 1 4 23 52 1 23 3 11 583
obl 1195 19 115 41 1 17 39 34 6 6 26 7 302 611
parataxis 6 1 5 4 6 285 3 180
vocative 17 8
xcomp 121 4 25 8 38 38 526
head 445 48 159 6388 717 142 564 83 2462 42 1 4163 120 52 1547 32 2235
No Match 1421 37 58 640 417 291 14 33 2291 146 6 802 94 52 369 96

Table 6.3: UD-UCCA confusion matrix calculated based on EWT gold-standard annota-
tions from the training and development sets (§6.3), after applying our extended converter
to UD (§6.4), by matching UD vertices and UCCA units with the same terminal yield.
The last column (row), labeled No Match, shows the number of edges of each UD
(UCCA) category that do not match any UCCA (UD) unit. Zero counts are omitted.

6.5 Analysis of Divergences

Using the shared format, we turn to analyzing the content differences between UCCA
and UD.9

6.5.1 Confusion Matrix

Table 6.3 presents the confusion matrix of categories between the converted UD and
UCCA, calculated over all sentences in the training and development sets of the shared
EWT reviews corpus. We leave the test set out of this evaluation to avoid contamination
for future parsing experiments.

In case of multiple UCCA units with the same terminal yield (i.e., units with a single
non-remote child), we take the top category only, to avoid double-counting. Excluding
punctuation, this results in 60,434 yields in UCCA and 58,992 in UD. Of these, 52,280
are common, meaning that a UCCA “parser” developed this way would get a very high
F1 score of 87.6%, if it is provided with the gold UCCA label for every converted edge.

Some yields still have more than one UCCA category associated with them, due to
edges with multiple categories (A

∣∣P and A
∣∣S). For presentation reasons, 0.15% of the

9See http://bit.ly/uccaud for a detailed explanation of each example in this section.

81

http://bit.ly/uccaud

UCCA units in the data are not presented here, as they belong to rare (< 0.1%) multiple-
category combinations.

Only 82.6% of UD’s syntactic arguments (ccomp, csubj, iobj, nsubj, obj, obl
and xcomp) are UCCA Participants, and only 72.9% of the Participants are syntactic
arguments–a difference stemming from the Scene/non-Scene (§6.5.2) and argument/ad-
junct (§6.5.3) distinctions. Moreover, if we identify predicates as words having at least
one argument and Scenes as units with at least one Participant, then only 92.1% of
UD’s predicates correspond to Scenes (many are secondary relations within one scene),
and only 80% of Scenes correspond to predicates (e.g., eventive nouns, which are not
syntactic predicates).

Examining the head row in Table 6.3 allows us to contrast the schemes’ notions of a
head. head-labeled units have at least one dependent in UD, or are single-clause sentences
(technically, they are non-terminals added by the converter). Of them, 75.7% correspond
to Processes, States, Parallel Scenes or Centers, which are UCCA’s notions of semantic
heads, and 11.6% are left unmatched, mostly due to MWEs analyzed in UD but not in
UCCA (§6.5.4). Another source of unmatched units is inter-Scene linkage, which tends to
be flatter in UCCA (§6.5.5). The rest are mostly due to head swap (e.g., “all of Dallas”,
where all is a Quantifier of Dallas in UCCA, but the head in UD).

In the following subsections, we review the main content differences between the
schemes, as reflected in the confusion matrix, and categorize them according to the UD
relations involved.

6.5.2 Scenes vs. Non-Scenes

UCCA distinguishes between Scenes and non-Scenes. This distinction crosses UD cat-
egories, as a Scene can be evoked by a verb, an eventive or stative noun (negotiation,
fatigue), an adjective or even a preposition (“this is for John”).

Core syntactic arguments. Subjects and objects are usually Participants (e.g., “wine
was excellent”). However, when describing a Scene, the subject may be a Process/State
(e.g., “but service is very poor”). Some wh-pronouns are the subjects or objects of a
relative clause, but are Linkers or Relators, depending on whether they link Scenes or
non-Scenes, respectively. For example, “who” in “overall, Joe is a happy camper who has
found a great spot” is an nsubj, but a Linker. Other arguments are Adverbials or Time
(see §6.5.3), and some do not match any UCCA unit, especially when they are parts of
MWEs (see §6.5.4).

82

Adjectival modifiers are Adverbials when modifying Scenes (“romantic dinner”),
States when describing non-Scenes (“beautiful hotel”) or when semantically predicative
(“such a convenient location”), or Elaborators where defining inherent properties of non-
Scenes (“medical school”).

Nominal and clausal modifiers. Most are Participants or Elaborators, depending on
whether they modify a Scene (e.g., “discount on services” and “our decision to buy when
we did” are Participants, but “my car’s gears and brakes” and “Some of the younger kids
that work there” are Elaborators). Unmatched acl are often free relative clauses (e.g., in
“the prices were worth what I got”, what is the obj of worth but a Participant of I got).

Case markers. While mostly Relators modifying non-Scenes (e.g., “the team at Bradley
Chevron”), some case markers are Linkers linking Scenes together (e.g., “very informa-
tive website with a lot of good work”). Others are Elaborators (e.g., “over a year”) or
States when used as the main relation in verbless or copula clauses (e.g., “it is right on
Wisconsin Ave”).

Coordination. Coordinating conjunctions (cc) are Connectors where they coordinate
non-Scenes (e.g., “Mercedes and Dan”) or Linkers where they coordinate Scenes (e.g.,
“outdated but not bad”). Similarly, conjuncts and list elements (conj, list) may be
Parallel Scenes (H), or Centers when they are non-Scenes.10

Determiners. Articles are Functions, but determiners modifying non-Scenes are Elab-
orators (e.g., “I will never recommend this gym to any woman”). Where modifying Scenes
(mostly negation) they are marked as Adverbials. For example, “no feathers in stock”,
“what a mistake”, and “the rear window had some leakage” are all Adverbials.

6.5.3 Primary and Secondary Relations

UD distinguishes core arguments, adverb modifiers, and obliques (in English UD, the
latter mostly correspond to prepositional dependents of verbs). UCCA distinguishes
Participants, including locations and abstract entities, from secondary relations (Adver-
bials), which cover manner, aspect and modality. Adverbials can be verbs (e.g., begin,
fail), prepositional phrases (with disrespect), as well as modals, adjectives and adverbs.

10While in UD the conjunction cc is attached to the following conjunct, in UCCA coordination is a
flat structure. This is a convention difference that we normalize (§6.4.2).

83

Adverbs and obliques. Most UD adverb modifiers are Adverbials (e.g., “I sometimes
go”), but they may be Participants, mostly in the case of semantic arguments describing
location (e.g., here). Obliques may be Participants (e.g., “wait for Nick”), Time (e.g.,
“for over 7 years”) or Adverbials–mostly manner adjuncts (by far).

Clausal arguments are Participant Scenes (e.g., “it was great that they did not charge
a service fee”, “did not really know what I wanted” or “I asked them to change it”).
However, when serving as complements to a secondary verb, they will not match any
unit in UCCA, as it places secondary verbs on the same level as their primary relation.
For example, to pay is an xcomp in “they have to pay”, while the UCCA structure is
flat: have to is an Adverbial and pay is a Process. Single-worded clausal arguments may
correspond to a Process/State, as in “this seems great”.

Auxiliary verbs are Functions (e.g., “do not forget”), or Adverbials when they are
modals (e.g., “you can graduate”). Semi-modals in UD are treated as clausal heads,
which take a clausal complement. For example, in “able to do well”, UD treats able as
the head, which takes do well as an xcomp. UCCA, on the other hand, treats it as an
Adverbial, creating a mismatch for xcomp.

6.5.4 Multi-Word Expressions

UD and UCCA treat MWEs differently. In UD they include names, compounds and
grammaticalized fixed expressions. UCCA treats names and grammaticalized MWEs as
unanalyzable units, but also a range of semantically opaque constructions (e.g., light
verbs and idioms). On the other hand, compounds are not necessarily unanalyzable in
UCCA, especially if compositional.

Compounds. English compounds are mostly nominal, and are a very heterogeneous
category. Most compounds correspond to Elaborators (e.g., “industry standard”), or
Elaborator Scenes (e.g., “out-of-place flat-screen TV”), and many are unanalyzable ex-
pressions (e.g., “mark up”). Where the head noun evokes a Scene, the dependent is often
a Participant (e.g., “food craving”), but can also be an Adverbial (e.g., “first time buy-
ers”) depending on its semantic category. Other compounds in UD are phrasal verbs (e.g.,
“figure out”, “cleaned up”), which UCCA treats as unanalyzable (leading to unmatched
units).

Core arguments. A significant number of subjects and objects are left unmatched
as they form parts of MWEs marked in UCCA as unanalyzable. UD annotates MWEs

84

involving a verb and its argument(s) just like any other clause, and therefore lacks this
semantic content. Examples include light verbs (e.g., “give a try”), idioms (“bites the
dust”), and figures of speech (e.g., “when it comes to”, “offer a taste (of)”), all are UCCA
units.

Complex prepositions. Some complex prepositions (e.g., according to or on top of),
not encoded as MWEs in UD, are unanalyzable in UCCA.

6.5.5 Linkage

Head selection. UCCA tends to flatten linkage, where UD, as a dependency scheme,
selects a head and dependent per relation. This yields scope ambiguities for coordination,
an inherently flat structure. For instance, “unique gifts and cards” is ambiguous in UD
as to whether unique applies only to gifts or to the whole phrase–both annotated as in
Figure 6.4a. UCCA, allowing non-terminal nodes, disambiguates this case (Figure 6.4b).

unique gifts and cards

amod

root

cc
conj

(a) UD

unique
E

gifts
C

and
N

cards
C

C

(b) UCCA

Figure 6.4: Coordination in UD and UCCA.

Clausal dependents. UD categorizes clause linkage into coordination, subordination,
argumenthood (complementation), and parataxis. UCCA distinguishes argumenthood
but conflates the others into the Parallel Scene category. For example, “We called few
companies before we decided to hire them” and “Check out The Willow Lounge, you’ll be
happy” are Parallel Scenes.

Note that while in UD, mark (e.g., before) is attached to the dependent adverbial
clause, a UCCA Linker lies outside the linked Scenes. To reduce unmatched advcl
instances, this convention difference is fixed by the converter (§6.4.2). Many remaining
unmatched units are due to conjunctions we could not reliably raise. For instance, the
marker to introducing an xcomp is ambiguous between Linker (purposive to) and Function
(infinitive marker). Similarly, wh-pronouns may be Linkers (“he was willing to budge a
little on the price which means a lot to me”), but have other uses in questions and free
relative clauses. Other mismatches result from the long tail of differences in how UD
and UCCA construe linkage. Consider the sentence in Figure 6.5. While moment is an
oblique argument of know in UD, From the moment is analyzed as a Linker in UCCA.

85

(a) UD

From the moment you enter , you know

case

det

obl
acl

nsubj
punct

nsubj

root

(b) UCCA

From
R

the
E

Fmoment
C

L

youk
A

yenter
P

H

, youk
A

yknow
S

H

U

Figure 6.5: Clause linkage in UD and UCCA.

6.5.6 Other Differences

Appositions in UD always follow the modified noun, but named entities in them are
UCCA Centers, regardless of position (e.g., in “its sister store Peking Garden”, the UD
head its sister store is an Elaborator, while Peking Garden is the Center).

Copulas. UCCA distinguishes copular constructions expressing identity (e.g., “This is
the original Ham’s restaurant”) where the copula is annotated as State, and cases of
attribution (e.g., “Mercedes and Dan are very thorough”) or location (e.g., “Excellent
chefs are in the kitchen”), where the copula is a Function.

Discourse markers and interjections. Units relating a Scene to the speech event or
to the speaker’s opinion are Ground (e.g., “no, Warwick in New Jersey” and “Please visit
my website”). On the other hand, discourse elements that relate one Scene to another
are Linkers (e.g., anyway).

Vocatives are both Ground and Participants if they participate in the Scene and are
the party addressed. For example, Mark in “Thanks Mark” is both the person addressed
and the one thanked.11

Expletives and subjects. Expletives are generally Functions, but some instances of
it and that are analyzed as nsubj in UD and as Function in UCCA (e.g., “it’s like driving
a new car”).

Excluded relations. We exclude the following UD labels, as they are irrelevant to our
evaluation: root (always matches the entire sentence); punct (punctuation is ignored in
UCCA evaluation); dep (unspecified dependency), orphan (used for gapping, which is

11The A
∣∣G column is omitted from Table 6.3 as this category combination occurs in only 0.02% of

edges in the corpus.

86

represented using remote edges in UCCA–see §6.4.1); fixed, flat and goeswith (cor-
respond to parts of unanalyzable units in UCCA, and so do not represent units on their
own–see §6.4.2); reparandum and dislocated (too rare in EWT).

6.6 Fine-Grained UCCA Parsing Evaluation

In §6.5 we used our comparison methodology, consisting of the conversion to a shared
format and matching units by terminal yield, to compare gold-standard UD and UCCA.
In this section we apply the same methodology to parser outputs, using gold-standard
UD for fine-grained evaluation.

6.6.1 Experimental Setup

Data. In addition to the UCCA EWT data (§6.3), we use the reviews section of the UD
v2.3 English_EWT treebank (Nivre et al., 2018),12 annotated over the exact same sen-
tences. We additionally use UDPipe v1.2 (Straka et al., 2016; Straka and Straková, 2017),
trained on English_EWT,13 for feature extraction. We apply the extended converter to
UD as before (§6.4.2).

Parser. We train TUPA v1.3 (Hershcovich et al., 2017, 2018a) on the UCCA EWT
data, with the standard train/development/test split. TUPA uses POS tags and syntactic
dependencies as features. We experiment both with using gold UD for feature extraction,
and with using UDPipe outputs.

Evaluation by gold-standard UD. UCCA evaluation is generally carried out by
considering a predicted unit as correct if there is a gold unit that matches it in terminal
yield and labels. Precision, Recall and F-score (F1) are computed accordingly. For the
fine-grained analysis, we split the gold-standard, predicted and matched UCCA units
according to the labels of the UD relations whose dependents have the same terminal
yield (if any).

6.6.2 Results

Table 6.4 presents TUPA’s scores on the UCCA EWT development and test sets. Sur-
prisingly, using UDPipe for feature extraction results in better scores than gold syntactic
tags and dependencies.

12https://hdl.handle.net/11234/1-2895
13https://hdl.handle.net/11234/1-2898

87

https://hdl.handle.net/11234/1-2895
https://hdl.handle.net/11234/1-2898

Primary Remote
Features LP LR LF LP LR LF

Development
Gold UD 72.1 71.2 71.7 61.2 38.1 47.0
UDPipe 73.0 72.1 72.5 53.7 40.8 46.4

Test
Gold UD 72.2 71.2 71.7 60.9 36.8 45.9
UDPipe 72.4 71.7 72.1 60.3 38.5 47.0

Table 6.4: Labeled precision, recall and F1 (in %) for primary and remote edges output
by TUPA on the UCCA EWT development (top) and test (bottom) sets, using either
gold-standard UD or UDPipe for TUPA features.

Table 6.5 shows fine-grained evaluation by UD relations. TUPA does best on auxil-
iaries and determiners, despite the heterogeneity of corresponding UCCA categories (see
Table 6.3), possibly by making lexical distinctions (e.g., modals and auxiliary verbs are
both UD auxiliaries, but are annotated as Adverbials and Functions, respectively).

Copulas and coordinating conjunctions pose a more difficult distinction, since the
same lexical items may have different categories depending on the context: State/Func-
tion for copulas, due to the distinction between identity and attribution, and Connec-
tor/Linker for conjunctions, due to the distinction between Scenes and non-Scenes. How-
ever, the reviews domain imposes a strong prior for both (Function and Linker, respec-
tively), which TUPA learns successfully.

Inter-clause linkage (conj, advcl, xcomp, ccomp, parataxis, acl and csubj) is a
common source of error for TUPA. Although the match between UCCA and UD is not
perfect in these cases, it is overall better than TUPA’s unlabeled performance, despite us-
ing gold-standard syntactic features. Our results thus suggest that encoding syntax more
directly, perhaps using syntactic scaffolding (Swayamdipta et al., 2018) or guided atten-
tion (Strubell et al., 2018), may assist in predicting unit boundaries. However, TUPA
often succeeds at making distinctions that are not even encoded in UD. For example, it
does reasonably well (71%) on distinguishing between noun modifiers of Scene-evoking
nouns (Participants) and modifiers of other nouns (Elaborators), surpassing a majority
baseline based on the UD relation (51%). Lexical resources that distinguish eventive and
relational nouns from concrete nouns may allow improving it even further. In the similar
case of compounds, lexical resources for light verbs and idioms may increase performance.

88

au
x

de
t

co
p

cc ex
pl

io
bj

ns
ub

j

ca
se

li
st

ad
vm

od

am
od

nu
mm

od

ma
rk

vo
ca

ti
ve

co
mp

ou
nd

ob
j

nm
od

co
nj

ad
vc

l

ob
l

xc
om

p

di
sc

ou
rs

e
cc

om
p

pa
ra

ta
xi

s
ap

po
s

ac
l

cs
ub

j

(a)Labeled F1 % 94 93 89 86 83 83 80 76 76 72 71 71 70 62 59 57 55 50 49 48 41 38 29 23 21 20 0
Unlabeled F1 % 99 99100 99100 83 84 95 76 95 95 86 97 92 84 65 77 61 51 61 63 95 29 36 48 37 33

(b)

Total in UD # 156392187212 12 8463335 15378374 38116 1219222231244 52208 1 16 29 52 22 81 5
Match Gold # 156385187206 12 6468305 12359361 33111 7146187198210 40162 28 10 20 48 17 56 4
Match Predicted # 154388187203 12 6446313 9345339 32113 6136163183177 30147 26 11 15 30 12 36 2
Labeled Correct # 145361166175 10 5365236 8253248 23 78 4 83 99104 96 17 74 11 4 5 9 3 9 0
Unlabeled Correct # 154381187203 12 5386293 8336334 28109 6118113147119 18 94 17 10 5 14 7 17 1

(c)Labeled/Unlabeled % 94 95 89 86 83100 95 81100 75 74 82 72 67 70 88 71 81 94 79 65 40100 64 43 53 0
Mode/Match Gold % 79 82 86 75 58100 91 79 83 51 35 85 45 71 54 91 51 70 92 68 44 30 94 98 41 72100

(d)Average Words # 1.0 1.0 1.0 1.0 1.0 1.1 1.6 1.0 2.2 1.2 1.21.1 1.01.6 1.2 3.0 2.4 5.86.6 3.86.01.1 9.06.74.05.6 7.5

Table 6.5: Fine-grained evaluation of TUPA (with gold-standard UD features) on the
EWT development set. (a) Columns are sorted by labeled F1, measuring performance on
each subset of edges. Unlabeled F1 ignores edge categories, evaluating unit boundaries
only. (b) Total number of instances of each UD relation; of them, matching UCCA units
in gold-standard and in TUPA’s predictions; their intersection, with/without regard to
categories. (c) Percentage of correctly categorized edges; for comparison, percentage of
most frequent category (see Table 6.3). (d) Average number of words in corresponding
terminal yields.

6.7 Discussion

NLP tasks often require semantic distinctions that are difficult to extract from syntactic
representations. Consider the example “after graduation, John moved to Paris” again.
While graduation evokes a Scene (Figure 6.1), in UD it is an oblique modifier of moved,
just like Paris is (Figure 6.2). The Scene/non-Scene distinction (§6.5.2) would assist
structural text simplification systems in paraphrasing this sentence to two sentences,
each one containing one Scene (Sulem et al., 2018a).

Another example is machine translation–translating the same sentence into Hebrew,
which does not have a word for graduation, would require a clause to convey the same
meaning. The mapping would therefore be more direct using a semantic representation,
and we would benefit from breaking the utterance into two Scenes.

6.8 Related Work

The use of syntactic parsing as a proxy for semantic structure has a long tradition in
NLP. Indeed, semantic parsers have leveraged syntax for output space pruning (Xue
and Palmer, 2004), syntactic features (Gildea and Jurafsky, 2002; Hershcovich et al.,
2017), joint modeling (Surdeanu et al., 2008; Hajič et al., 2009), and multi-task learning
(Swayamdipta et al., 2016b, 2018; Hershcovich et al., 2018a). Empirical comparison be-

89

tween syntactic and semantic schemes, however, is still scarce. Rudinger and Van Durme
(2014) mapped Stanford Dependencies (precursor to UD) to Hobbsian Logical Form,
identifying semantic gaps in the former. PredPatt (White et al., 2016), a framework
for extracting predicate-argument structures from UD, was evaluated by Zhang et al.
(2017) on a large set of converted PropBank annotations. Szubert et al. (2018) proposed
a method for aligning AMR and UD subgraphs, finding that 97% of AMR edges are
evoked by one or more words or syntactic relations. Damonte et al. (2017) refined AMR
evaluation by UD labels, similar to our fine-grained evaluation of UCCA parsing.

Some syntactic representation approaches, notably CCG (Steedman, 2000), directly
reflect the underlying semantics, and have been used to transduce semantic forms using
rule-based systems (Basile et al., 2012). A related line of work tackles the transduction
of syntactic structures into semantic ones. Reddy et al. (2016) proposed a rule-based
method for converting UD to logical forms. Stanovsky et al. (2016) converted Stan-
ford dependency trees into proposition structures (PropS), abstracting away from some
syntactic detail.

6.9 Conclusion

We evaluated the similarities and divergences in the content encoded by UD and UCCA.
We annotated the reviews section of the English Web Treebank with UCCA, and used
an automated methodology to evaluate how well the two schemes align, abstracting away
from differences of mere convention. We provided a detailed picture of the content differ-
ences between the schemes. Notably, we quantified the differences between the notions
of syntactic and semantic heads and arguments, finding substantial divergence between
them. Our findings highlight the potential utility of using semantic parsers for text un-
derstanding applications (over their syntactic counterparts), but also expose challenges
semantic parsers must address, and potential approaches for addressing them.

Acknowledgments

This work was supported by the Israel Science Foundation (grant No. 929/17), and by
the HUJI Cyber Security Research Center in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office. We thank Jakob Prange, Nathan Schneider and
the anonymous reviewers for their helpful comments.

90

Chapter 7

Discussion

In this thesis, I showed that meaning representation is valuable for language understand-
ing, and that TUPA, an accurate UCCA parser, is suited to many meaning representa-
tions. Furthermore, multitask learning allows useful shared generalizations to emerge,
improving TUPA’s performance by taking advantage of its general transition-based ar-
chitecture and flexible neural network classifier. As different meaning representations
capture many similar distinctions, this approach proved effective, gaining from data an-
notated in each scheme even though they had been designed separately and with different
formal properties. While divergences between the content of the schemes may limit the
gain from sharing, they highlight relative strengths, which are meaningful both theoreti-
cally and practically.

7.1 Objectives

The objective of this thesis (see Section 1.3) were to develop techniques for graph parsing
in general and UCCA in particular, comparing UCCA to other representation schemes,
and hybridizing meaning representations and parsers to improve their performance. In-
deed, in Chapter 3, an accurate and efficient UCCA parser was presented, and in Chap-
ter 5 its applicability was demonstrated to Universal Dependencies. In Chapter 4 more
representation frameworks were shown to be supported by the parser, and furthermore,
transfer and multitask learning were shown to effectively improve parsing performance
by taking advantage of shared generalizations. Finally, Chapter 6 provided a thorough
qualitative and quantitative analysis of UCCA and Universal Dependencies, highlighting
the content differences, the semantic divergences and points of similarity.

UCCA’s merits in providing a cross-linguistically applicable, broad-coverage annota-
tion will support ongoing efforts to incorporate deeper semantic structures into a variety
of applications, such as machine translation (Jones et al., 2012) and summarization (Liu

91

et al., 2015). The advantage of UCCA as compared to syntactic annotation schemes
for machine translation is apparent, as translation tends to preserve semantic structure
more than syntactic structure (Sulem et al., 2015). Using UCCA as an intermediate
representation is thus likely to achieve outputs that are more semantically similar to the
source.

7.2 Challenges

At the initial stages of this work, dataset size was a concern. Models with a large
number of parameters, such as the neural network models employed in TUPA, typically
require very large training sets. Since the UCCA datasets are small in relation to other
schemes, training neural network models on them seemed to pose a challenge. However,
the current performance of TUPA in UCCA parsing is already quite satisfactory. This is
demonstrated by the fact that the parser has been successfully used in various applications
(Choshen and Abend, 2018; Sulem et al., 2018a,b). Furthermore, multitask learning
proved to be an effective method to overcome the data scarcity issue. The UCCA data
has also been slowly growing and extended to more languages by further labeling efforts,
and results seem to improve as more and more training data is available.

While many distinctions are shared between UCCA and other semantic and syntactic
schemes, they are largely obscured by differences in representation format and convention.
A second challenge was thus in developing a generic parsing system that would be able to
handle more than one semantic scheme. However, the general architecture of the parser
was effective in handling these graphs structure. Conversion to a common graph format
and assimilation of superficial structures addressed the generality question effectively to
allow multitask learning, and further, allowed deep inspection of content divergences and
convergences.

7.3 Further Analysis

7.3.1 Benefit of Multitask Learning

To further quantify the improvements due to multitask learning, where the tasks of
parsing multiple semantic representations are combined as auxiliary tasks for TUPA to
improve UCCA parsing, Figure 7.1 offers a fine-grained analysis of the performance of
different multitask models. The benefit of the multitask models over the single-task
baseline is especially apparent for Connectors and Linkers, demonstrating the improved
capability to parse coordination structures correctly, which are indeed relevant for all

92

meaning representations. Furthermore, while the labeled F1 for State is uniformly low
due to the rarity of this category and its common confusion with Process, the multitask
model with all auxiliary task is able to reach 40% labeled F1, showing it is able to
generalize this difficult distinction between predicates describing events and attributes.
In French and German, the improvement is again apparent for Connectors and Linkers,
but now especially also for Parallel Scenes–these seem to be responsible for most of the
improvement due to multitask learning in these languages. Again, this shows that the
syntactic ability to split phrases and clauses to separate Scenes is greatly boosted by the
auxiliary task (UD in this case).

Figure 7.2 shows fine-grained analysis by UD relations. Surprisingly, determiners
seem to suffer from multitask learning, as the single-task baseline does best on them.
While determiners in UCCA are mostly Elaborators (in the version of the corpora on
which the experiment was made), they are mostly treated as vacuous semantically in
DM and AMR, which could explain their poor representation in models trained with
these auxiliary tasks. UD as an auxiliary greatly helps with this category in French and
German, but also seems to deteriorate its treatment in English. Prepositions in German
(bearing the case relation) are greatly improved by adding UD as an auxiliary. This is a
common relation, spread over multiple UCCA categories. Learning to represent it more
accurately improves performance across the board.

7.4 Ongoing Work

The ideas presented in this thesis offer many exciting opportunities for further research.
Following are such directions, which I have started pursuing.

7.4.1 Combining Syntax with Lexical Semantics

In the comparison between Universal Dependencies (UD) and UCCA, 88% of edges were
found to be common between the schemes (ignoring the label), meaning the linguistic
structures annotated by them are very similar. Inspecting the remaining divergences
reveals, for example, that only about 82% of UCCA unanalyzable units (i.e., units without
a compositional internal structure) are even sub-trees in UD. The remaining cases seem to
be almost exclusively multi-word Linkers, such as “even though”, “when it comes to” and
“just because”. Furthermore, only 73% of Participants in UCCA Scenes were found to be
arguments of syntactic predicates in UD, due to the differences in distinctions between
Scenes/non-Scenes and between main relations, secondary relations and participants.

These gaps can perhaps be closed by complementing syntax with lexical semantics to

93

Par
tic

ip
an

t

Cen
te

r

Adve
rb

ia
l

Ela
bor

at
or

Par
al

le
lS

ce
ne

Con
nec

to
r

Rel
at

or

Sta
te

Funct
io

n

Pro
ce

ss

Lin
ke

r

77 78 78 77

75

83

92

35

82

78 78

76 77

75

77 76

84

91

37

82

77

84

77 77 77 77

75

84

91

36

80

76

82

77 78 77 78 78

86

92

38

83

76

87

77

80

75

78 77

89

93

37

84

78

81

77 78

76

79

75

84

92

36

85

77

82

77

79

75

79

77

90

92

34

83

78

82

78 79

75

78

76

87

92

40

84

77

83

Single UCCA+AMR UCCA+UD UCCA+DM UCCA+DM+UD UCCA+AMR+UD UCCA+AMR+DM All

(a) English Wiki

Par
tic

ip
an

t
Cen

te
r

Adve
rb

ia
l

Ela
bor

at
or

Par
al

le
lS

ce
ne

Con
nec

to
r

Rel
at

or
Sta

te
Funct

io
n

Pro
ce

ss
Lin

ke
r

38

77

25

21

23

78

16

0

67

0

30

48

76

32

26

38

89

14

0

68

0

50

(b) French 20K

Par
tic

ip
an

t
Cen

te
r

Adve
rb

ia
l

Ela
bor

at
or

Par
al

le
lS

ce
ne

Con
nec

to
r

Rel
at

or
Sta

te
Funct

io
n

Pro
ce

ss
Lin

ke
r

79

89

66

87

41

78 79

93

0

88

71

84

90

72

89

83

86

80

93

0

85

72

(c) German 20K

Figure 7.1: TUPA’s F1 per UCCA category in each single-/multitask setting.

94

ca
se

co
m

pou
nd

io
bj

nm
od

nsu
bj

ob
j

ap
pos

co
nj

det ac
l

am
od

84 83 85 85

78

88

84

76

82 80 8182 84 82 84

78

84 83

80

67

81 8384

87

83 85

77

84 86

78

59

82

86

82 81

84 86

77

88

85

81

53

83

8685 83 82

88

83

93

85

80

67

81

86

83 81 83 85

81

87 85

81

67

80

8482 81

84 84 82

86

83

80

47

83

86

83

78

86 87

81

91

85

81

57

81 83

Single UCCA+AMR UCCA+UD UCCA+DM UCCA+DM+UD UCCA+AMR+UD UCCA+AMR+DM All

(a) English Wiki

au
x

ob
l

ad
vc

l

ex
pl

m
ar

k cc

ad
vm

od

nu
m

m
od

cc
om

p

84

78

81

64

44

80

83 84 86

83

77 78

65

44

93

83

90

86

83

78

81

60

44

80 82

94

8685

80 79

63

50

93

86 87 8686

79

82

62

44

93

84

81

8684

79

82

62

50

93

85

90

8684 83 82

59

44

93

85 84 8686

80 80

69

50

93

83

94

86

(b) English Wiki (cont.)

ca
se

co
m

pou
nd

io
bj

nm
od

nsu
bj

ob
j

ap
pos

co
nj

det ac
l

am
od au

x

ob
l

ad
vc

l
ex

pl
m

ar
k cc

ad
vm

od
nu

m
m

od
par

at
ax

is

co
p

cc
om

p
xc

om
p

78

22

10

34

27

19

37

26

87

11

48 47

27

13 12

29

42

19

58

0

44

10

22

84

32

18

51

34

38

17

31

89

23

51

70

41

14 12

36

64

26

44

27 28

41

28

(c) French 20K

ca
se

co
m

pou
nd

io
bj

nm
od

nsu
bj

ob
j

ap
pos

co
nj

det ac
l

am
od au

x

ob
l

ad
vc

l
ex

pl
m

ar
k cc

ad
vm

od
nu

m
m

od
par

at
ax

is

co
p

cc
om

p
xc

om
p

6

74

59

90

95

84

89

79

10

65

80

62

45

75 74 76

73

53

76 78

90

56

67

82

79

67

91

96

85

92

81

91

72

90

63

73

79

76 76 76

62

74

90 91

79

67

(d) German 20K

Figure 7.2: TUPA’s F1 per UD relation in each single-/multitask setting.

95

make up for differences corresponding to semantic distinctions that are not expressed in
UD. Lexical semantic resources, such as STREUSLE (Schneider, 2014; Walsh et al., 2018;
Schneider et al., 2018; Blodgett and Schneider, 2018), may provide the necessary annota-
tion to close the gap between UD and UCCA: for example, it contains labels for various
types of multi-word expressions, even ones that are not UD sub-trees; and semantically
categorize lexical items according to lexical category and supersense, distinguishing, for
example, eventive from non-eventive nouns. This will also address the need for a com-
parison of UD enhanced dependencies and UCCA remote and implicit units, mentioned
in Chapter 6.

7.4.2 Broad-coverage Semantic Parsing

While implicit units (see Section 1.2) are not supported by the original parser presented
in Chapter 3, ongoing work, beyond the scope of this thesis, addresses the prediction
of implicit arguments in UCCA and other meaning representations (Bender et al., 2011;
Cheng and Erk, 2018; Petruck, 2019) with a general mechanism that can be used to
augment a UCCA parser to support implicit unit prediction. Similarly, the phenomenon
of elided predicates and null nodes in Universal Dependencies, mentioned in Chapter 5,
overlaps with the phenomenon of implicit units (where in this case the main relation is
implicit rather than an argument), and can be addressed by a similar technique.

7.4.3 Establishing the Meaning Representation Parsing Task

TUPA, the parser presented in this thesis, is the first UCCA parser. In other pars-
ing tasks, years of experiments and progress have yielded very accurate and fine-tuned
parsers. While TUPA is quite accurate, there can doubtlessly be countless improvements
due to different ways of looking at the problem or a better selection of architecture and
parameters. During January 2019, we (Zohar Aizenbud, Leshem Choshen, Elior Sulem,
Omri Abend, Ari Rappoport and myself) ran a shared task as part of the International
Workshop on Semantic Evaluation, titled Task 1: Cross-lingual Semantic Parsing with
UCCA. The task presented participants with UCCA parsing challenges in English, Ger-
man and French. The shared task has yielded improvements over TUPA in all languages
and settings, with various approaches with respect to the parsing system, machine learn-
ing architecture, and cross-lingual transfer.1 The task results were presented during
SemEval 2019.2

1https://competitions.codalab.org/competitions/19160
2http://alt.qcri.org/semeval2019/

96

https://competitions.codalab.org/competitions/19160
http://alt.qcri.org/semeval2019/

Subsequently, I co-organized another shared task at the SIGNLL Conference on Com-
putational Natural Language Learning3 (CoNLL 2019), on Cross-Framework Meaning
Representation Parsing.4 The task, organized jointly by Stephan Oepen, Omri Abend,
Jan Hajič, Tim O’Gorman, Nianwen Xue and myself, involved parsing into a range of dif-
ferent semantic representation schemes (DM, PSD, EDS, UCCA and AMR), differing in
both formal structure and linguistic approaches. By combining the different schemes in a
single task, we established cross-framework meaning representation parsing as a task, and
“blurred the boundaries” between meaning representations, enabling cross-fertilization.
Furthermore, the task yielded an improved understanding of the commonalities and dif-
ferences between the schemes, by systematic contrastive evaluation across frameworks.
This shared task also addresses the prospective future work referred to in Chapter 4,
since a subset of the evaluation data is annotated in all included meaning representa-
tion frameworks, providing a controlled experiment for comparison without confounds
of domain and text properties. Additionally, the best-performing parsers submitted to
the shared task provide uniform algorithms and architectures competitive on all parsing
tasks, rather than focusing on a particular task and treating the others as auxiliary. This
is a significant step in the direction of a truly universal model for semantic parsing.

7.5 Conclusion

The comparison between different traditions in linguistic representation, supported by the
technology developed in this research and by ongoing work, may contribute to linguistic
theory by helping address questions such as how best to measure the difference in meaning
expressed in translations, or differences between child-directed and adult language, or
between different domains.

I see learning semantic parsing as a means for computers to learn language. While
different representations focus on different distinctions and do so with formally different
structures, they share an overall goal, which is to support the development of natural
language processing systems that are aware of the meaning expressed in the processed
text. The combined datasets annotated in each of these representations are an invalu-
able resource, which, used effectively, can greatly boost our achievements in language
understanding and processing.

3http://www.conll.org/
4http://mrp.nlpl.eu

97

http://www.conll.org/
http://mrp.nlpl.eu

Bibliography

Omri Abend and Ari Rappoport. 2013. Universal Conceptual Cognitive Annotation (UCCA).
In Proc. of ACL, pages 228–238.

Omri Abend and Ari Rappoport. 2017. The state of the art in semantic representation. In Proc.
of ACL, pages 77–89.

Omri Abend, Shai Yerushalmi, and Ari Rappoport. 2017. Uccaapp: Web-application for syn-
tactic and semantic phrase-based annotation. Proc. of ACL System Demonstrations, pages
109–114.

Željko Agić and Alexander Koller. 2014. Potsdam: Semantic dependency parsing by bidirec-
tional graph-tree transformations and syntactic parsing. In Proc. of SemEval, pages 465–470.

Željko Agić, Alexander Koller, and Stephan Oepen. 2015. Semantic dependency graph parsing
using tree approximations. In Proc. of IWCS, pages 217–227.

Mariana S. C. Almeida and André F. T. Martins. 2015. Lisbon: Evaluating
TurboSemanticParser on multiple languages and out-of-domain data. In Proc. of SemEval,
pages 970–973.

Bharat Ram Ambati, Tejaswini Deoskar, Mark Johnson, and Mark Steedman. 2015. An incre-
mental algorithm for transition-based CCG parsing. In Proc. of NAACL, pages 53–63.

Bharat Ram Ambati, Tejaswini Deoskar, and Mark Steedman. 2016. Shift-reduce CCG parsing
using neural network models. In Proc. of NAACL-HLT, pages 447–453.

Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah Smith. 2016. Many
languages, one parser. TACL, 4:431–444.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normalized transition-based neural
networks. In Proc. of ACL, pages 2442–2452.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015. Broad-coverage CCG semantic parsing
with AMR. In Proc. of EMNLP, pages 1699–1710.

98

http://aclweb.org/anthology/P13-1023
https://doi.org/10.18653/v1/P17-1008
http://aclweb.org/anthology/S14-2081
http://aclweb.org/anthology/S14-2081
http://aclweb.org/anthology/W15-0126
http://aclweb.org/anthology/W15-0126
http://aclweb.org/anthology/S15-2162
http://aclweb.org/anthology/S15-2162
http://aclweb.org/anthology/N15-1006
http://aclweb.org/anthology/N15-1006
http://aclweb.org/anthology/N16-1052
http://aclweb.org/anthology/N16-1052
http://www.aclweb.org/anthology/Q16-1031
http://www.aclweb.org/anthology/Q16-1031
http://aclweb.org/anthology/P16-1231
http://aclweb.org/anthology/P16-1231
http://aclweb.org/anthology/D15-1198
http://aclweb.org/anthology/D15-1198

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The berkeley framenet project.
In ACL-COLING ’98.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR parsing using stack-LSTMs. In Proc. of
EMNLP, pages 1269–1275.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved transition-based parsing
by modeling characters instead of words with LSTMs. In Proc. of EMNLP, pages 349–359.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob,
Kevin Knight, Martha Palmer, and Nathan Schneider. 2013. Abstract Meaning Representa-
tion for sembanking. In Proc. of the Linguistic Annotation Workshop.

Guntis Barzdins and Didzis Gosko. 2016. RIGA at SemEval-2016 task 8: Impact of Smatch
extensions and character-level neural translation on AMR parsing accuracy. In Proc. of
SemEval, pages 1143–1147.

Valerio Basile, Johan Bos, Kilian Evang, and Noortje Venhuizen. 2012. Developing a large
semantically annotated corpus. In Proc. of LREC, pages 3196–3200.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
et al. 2018. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261.

Eric Baucom, Levi King, and Sandra Kübler. 2013. Domain adaptation for parsing. In Proc.
of RANLP, pages 56–64.

Emily M Bender, Dan Flickinger, Stephan Oepen, and Yi Zhang. 2011. Parser evaluation over
local and non-local deep dependencies in a large corpus. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 397–408. Association for Compu-
tational Linguistics.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein. 2012. An empirical investigation of
statistical significance in NLP. In Proc. of EMNLP-CoNLL, pages 995–1005.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick. 2012. English web treebank. Linguistic
Data Consortium, Philadelphia, PA.

Joachim Bingel and Anders Søgaard. 2017. Identifying beneficial task relations for multi-task
learning in deep neural networks. In Proc. of EACL, pages 164–169.

Alexandra Birch, Omri Abend, Ondřej Bojar, and Barry Haddow. 2016. HUME: Human UCCA-
based evaluation of machine translation. In Proc. of EMNLP, pages 1264–1274.

99

http://aclweb.org/anthology/D17-1130
http://aclweb.org/anthology/W13-2322
http://aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1176
http://www.aclweb.org/anthology/R13-1008
http://www.aclweb.org/anthology/D12-1091
http://www.aclweb.org/anthology/D12-1091
http://www.aclweb.org/anthology/E17-2026
http://www.aclweb.org/anthology/E17-2026
http://aclweb.org/anthology/D16-1134
http://aclweb.org/anthology/D16-1134

John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural
correspondence learning. In Proc. of EMNLP, pages 120–128.

Austin Blodgett and Nathan Schneider. 2018. Semantic supersenses for English possessives. In
Proceedings of the Eleventh International Conference on Language Resources and Evaluation,
pages 1529–1534, Miyazaki, Japan. ELRA.

Bernd Bohnet and Joakim Nivre. 2012. A transition-based system for joint part-of-speech
tagging and labeled non-projective dependency parsing. In Proc. of EMNLP-CoNLL, pages
1455–1465.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word
vectors with subword information. TACL, 5:135–146.

Marcel Bollmann and Anders Søgaard. 2016. Improving historical spelling normalization with
bi-directional lstms and multi-task learning. In Proc. of COLING, pages 131–139.

Johan Bos. 2005. Towards wide-coverage semantic interpretation. In Proc. of IWCS, volume 6,
pages 42–53.

Johan Bos. 2008. Wide-coverage semantic analysis with boxer. In Proceedings of the 2008
Conference on Semantics in Text Processing, pages 277–286. Association for Computational
Linguistics.

Johan Bos. 2015. Open-domain semantic parsing with boxer. In Proceedings of the 20th nordic
conference of computational linguistics (NODALIDA 2015), pages 301–304.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015a. A
large annotated corpus for learning natural language inference. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics.

Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D Manning,
and Christopher Potts. 2016. A fast unified model for parsing and sentence understanding.
arXiv preprint arXiv:1603.06021.

Samuel R Bowman, Christopher D Manning, and Christopher Potts. 2015b. Tree-structured
composition in neural networks without tree-structured architectures. arXiv preprint
arXiv:1506.04834.

Samuel R Bowman, Christopher Potts, and Christopher D Manning. 2014. Recursive neural
networks can learn logical semantics. arXiv preprint arXiv:1406.1827.

Chloé Braud, Barbara Plank, and Anders Søgaard. 2016. Multi-view and multi-task training of
RST discourse parsers. In Proc. of COLING, pages 1903–1913.

100

http://www.aclweb.org/anthology/W06-1615
http://www.aclweb.org/anthology/W06-1615
http://www.aclweb.org/anthology/D12-1133
http://www.aclweb.org/anthology/D12-1133
http://aclweb.org/anthology/Q17-1010
http://aclweb.org/anthology/Q17-1010
http://www.aclweb.org/anthology/C16-1013
http://www.aclweb.org/anthology/C16-1013
http://www.let.rug.nl/bos/pubs/Bos2005IWCS.pdf
http://www.aclweb.org/anthology/C16-1179
http://www.aclweb.org/anthology/C16-1179

Jan Buys and Phil Blunsom. 2017a. Oxford at SemEval-2017 task 9: Neural AMR parsing with
pointer-augmented attention. In Proc. of SemEval, pages 914–919.

Jan Buys and Phil Blunsom. 2017b. Robust incremental neural semantic graph parsing. In
Proc. of ACL, pages 1215–1226.

Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018. A full end-to-end semantic role labeler,
syntactic-agnostic over syntactic-aware? In Proc. of COLING, pages 2753–2765.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation metric for semantic feature structures.
In Proc. of ACL, pages 748–752.

Rich Caruana. 1997. Multitask Learning. Machine Learning, 28(1):41–75.

Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using
neural networks. In Proc. of EMNLP, pages 740–750.

Pengxiang Cheng and Katrin Erk. 2018. Implicit argument prediction with event knowledge.
arXiv preprint arXiv:1802.07226.

Leshem Choshen and Omri Abend. 2018. Reference-less measure of faithfulness for grammatical
error correction. In Proc. of NAACL-HLT.

Michael Collins. 1997. Three generative lexicalized models for statistical parsing.

Michael Collins and Brian Roark. 2004. Incremental parsing with the perceptron algorithm. In
Proc. of ACL, pages 111–118.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. 2011. Natural language processing (almost) from scratch. J. Mach. Learn. Res.,
12:2493–2537.

Matthieu Constant and Joakim Nivre. 2016. A transition-based system for joint lexical and
syntactic analysis. In Proc. of ACL, pages 161–171.

Ann Copestake and Dan Flickinger. 2000. An open source grammar development environment
and broad-coverage English grammar using HPSG. In Proc. of LREC, pages 591–600.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A. Sag. 2005. Minimal recursion se-
mantics: An introduction. Research on Language and Computation, 3(2):281–332.

William Croft and D Alan Cruse. 2004. Cognitive linguistics. Cambridge University Press.

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005. The PASCAL recognising textual
entailment challenge. In Machine Learning Challenges Workshop, pages 177–190. Springer.

101

https://doi.org/10.18653/v1/S17-2157
https://doi.org/10.18653/v1/S17-2157
https://doi.org/10.18653/v1/P17-1112
http://aclweb.org/anthology/C18-1233
http://aclweb.org/anthology/C18-1233
http://www.aclweb.org/anthology/P13-2131
https://doi.org/10.1023/A:1007379606734
http://aclweb.org/anthology/D14-1082
http://aclweb.org/anthology/D14-1082
http://aclweb.org/anthology/N18-2020
http://aclweb.org/anthology/N18-2020
http://aclweb.org/anthology/P04-1015
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://aclweb.org/anthology/P16-1016
http://aclweb.org/anthology/P16-1016
https://www.cl.cam.ac.uk/~aac10/papers/lrec2000.pdf
https://www.cl.cam.ac.uk/~aac10/papers/lrec2000.pdf
https://doi.org/10.1007/s11168-006-6327-9
https://doi.org/10.1007/s11168-006-6327-9

Marco Damonte and Shay B. Cohen. 2018. Cross-lingual abstract meaning representation pars-
ing. In Proc. of NAACL-HLT, pages 1146–1155.

Marco Damonte, Shay B. Cohen, and Giorgio Satta. 2017. An incremental parser for Abstract
Meaning Representation. In Proc. of EACL.

Hal Daume III. 2007. Frustratingly easy domain adaptation. In Proc. of ACL, pages 256–263.

Robert M. W. Dixon. 2010a. Basic Linguistic Theory: Grammatical Topics, volume 2. Oxford
University Press.

Robert M. W. Dixon. 2010b. Basic Linguistic Theory: Methodology, volume 1. Oxford Univer-
sity Press.

Robert M. W. Dixon. 2012. Basic Linguistic Theory: Further Grammatical Topics, volume 3.
Oxford University Press.

Timothy Dozat, Peng Qi, and Christopher D. Manning. 2017. Stanford’s graph-based neural
dependency parser at the conll 2017 shared task. In Proc. of CoNLL, pages 20–30.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and Xiaojun Wan. 2015. Peking: Building
semantic dependency graphs with a hybrid parser. In Proc. of SemEval, pages 927–931.

Long Duong, Hadi Afshar, Dominique Estival, Glen Pink, Philip Cohen, and Mark Johnson.
2017. Multilingual semantic parsing and code-switching. In Proc. of CoNLL, pages 379–389.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015.
Transition-based dependeny parsing with stack long short-term memory. In Proc. of ACL,
pages 334–343.

Jeffrey L Elman. 1990. Finding structure in time. Cognitive science, 14(2):179–211.

Xing Fan, Emilio Monti, Lambert Mathias, and Markus Dreyer. 2017. Transfer learning for
neural semantic parsing. In Proc. of Workshop on Representation Learning for NLP, pages
48–56.

Daniel Fernández-González and André FT Martins. 2015. Parsing as reduction. In Proc. of
ACL, pages 1523–1533.

Jenny Rose Finkel and Christopher D. Manning. 2009. Joint parsing and named entity recog-
nition. In Proc. of NAACL-HLT, pages 326–334.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A. Smith. 2014. A
discriminative graph-based parser for the Abstract Meaning Representation. In Proc. of ACL,
pages 1426–1436.

102

https://doi.org/10.18653/v1/N18-1104
https://doi.org/10.18653/v1/N18-1104
http://homepages.inf.ed.ac.uk/scohen/eacl17amr.pdf
http://homepages.inf.ed.ac.uk/scohen/eacl17amr.pdf
http://www.aclweb.org/anthology/P07-1033
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
http://aclweb.org/anthology/S15-2154
http://aclweb.org/anthology/S15-2154
https://doi.org/10.18653/v1/K17-1038
http://aclweb.org/anthology/P15-1033
http://aclweb.org/anthology/W17-2607
http://aclweb.org/anthology/W17-2607
http://aclweb.org/anthology/P15-1147
http://www.aclweb.org/anthology/N09-1037
http://www.aclweb.org/anthology/N09-1037
http://aclweb.org/anthology/P14-1134
http://aclweb.org/anthology/P14-1134

Daniel Flickinger. 2000. On building a more efficient grammar by exploiting types. In Collabo-
rative Language Engineering, volume 6, pages 15–28. CLSI, Stanford, CA.

Daniel Flickinger, Yi Zhang, and Valia Kordoni. 2012. DeepBank: A dynamically annotated
treebank of the Wall Street Journal. In Proc. of Workshop on Treebanks and Linguistic
Theories, pages 85–96.

William Foland and James H. Martin. 2017. Abstract Meaning Representation parsing using
LSTM recurrent neural networks. In Proc. of ACL, pages 463–472.

Yarin Gal and Zoubin Ghahramani. 2016. A Theoretically Grounded Application of Dropout
in Recurrent Neural Networks. In D D Lee, M Sugiyama, U V Luxburg, I Guyon, and
R Garnett, editors, Advances in Neural Information Processing Systems 29, pages 1019–1027.
Curran Associates, Inc.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Computational
Linguistics, 28(3).

Yoav Goldberg. 2016. A primer on neural network models for natural language processing.

Yoav Goldberg and Michael Elhadad. 2011. Learning sparser perceptron models. Technical
report.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic oracle for arc-eager dependency parsing.
In Proc. of COLING, pages 959–976.

Christoph Goller and Andreas Kuchler. 1996. Learning task-dependent distributed representa-
tions by backpropagation through structure. In Proceedings of International Conference on
Neural Networks (ICNN’96), volume 1, pages 347–352. IEEE.

James Goodman, Andreas Vlachos, and Jason Naradowsky. 2016. Noise reduction and targeted
exploration in imitation learning for Abstract Meaning Representation parsing. In Proc. of
ACL, pages 1–11.

Alex Graves. 2008. Supervised sequence labelling with recurrent neural networks. Ph. D. thesis.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu. 2016. Exploiting multi-typed treebanks
for parsing with deep multi-task learning. CoRR, abs/1606.01161.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia
Martí, Lluís Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Štepánek, Pavel
Straňák, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. 2009. The CoNLL-2009 shared task:
Syntactic and semantic dependencies in multiple languages. In Proc. of CoNLL, pages 1–18.

103

https://www.dfki.de/lt/publication_show.php?id=6619
https://www.dfki.de/lt/publication_show.php?id=6619
https://doi.org/10.18653/v1/P17-1043
https://doi.org/10.18653/v1/P17-1043
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://www.aclweb.org/anthology/J02-3001
http://www.cs.bgu.ac.il/{~}yoavg/publications
http://aclweb.org/anthology/C12-1059
http://aclweb.org/anthology/P16-1001
http://aclweb.org/anthology/P16-1001
https://arxiv.org/abs/1606.01161
https://arxiv.org/abs/1606.01161
http://www.aclweb.org/anthology/W09-1201
http://www.aclweb.org/anthology/W09-1201

Kazuma Hashimoto, caiming xiong, Yoshimasa Tsuruoka, and Richard Socher. 2017. A joint
many-task model: Growing a neural network for multiple NLP tasks. In Proc. of EMNLP,
pages 1923–1933.

Shexia He, Zuchao Li, Hai Zhao, and Hongxiao Bai. 2018. Syntax for semantic role labeling, to
be, or not to be. In Proc. of ACL, pages 2061–2071.

James Henderson, Paola Merlo, Ivan Titov, and Gabriele Musillo. 2013. Multilingual joint
parsing of syntactic and semantic dependencies with a latent variable model. Computational
Linguistics, 39(4):949–998.

Daniel Hershcovich, Omri Abend, and Ari Rappoport. 2017. A transition-based directed acyclic
graph parser for UCCA. In Proc. of ACL, pages 1127–1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport. 2018a. Multitask parsing across semantic
representations. In Proc. of ACL, pages 373–385.

Daniel Hershcovich, Omri Abend, and Ari Rappoport. 2018b. Universal dependency parsing
with a general transition-based DAG parser. In Proc. of CoNLL. To appear.

Jonathan Herzig and Jonathan Berant. 2017. Neural semantic parsing over multiple knowledge-
bases. In Proc. of ACL, pages 623–628.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation,
9(8):1735–1780.

Matthew Honnibal and Mark Johnson. 2015. An improved non-monotonic transition system
for dependency parsing. In Proc. of EMNLP, pages 1373–1378.

Matthew Honnibal and Ines Montani. 2018. spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing. To appear.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining with deep recurrent neural networks.
In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pages 720–728.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and Dan Flickinger. 2012. Who did what to
whom? A contrastive study of syntacto-semantic dependencies. In Proc. of LAW, pages 2–11.

Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann, and Kevin Knight. 2012.
Semantics-based machine translation with hyperedge replacement grammars. In Proc. of
COLING, pages 1359–1376.

Aravind Joshi and Yves Schabes. 1997. Tree-Adjoining Grammars. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Languages, volume 3, pages 69–124. Springer,
Berlin.

104

http://aclweb.org/anthology/D17-1206
http://aclweb.org/anthology/D17-1206
http://aclweb.org/anthology/P18-1192
http://aclweb.org/anthology/P18-1192
http://cognet.mit.edu/node/27348
http://cognet.mit.edu/node/27348
http://aclweb.org/anthology/P17-1104
http://aclweb.org/anthology/P17-1104
http://aclweb.org/anthology/P18-1035
http://aclweb.org/anthology/P18-1035
http://aclweb.org/anthology/P17-2098
http://aclweb.org/anthology/P17-2098
http://aclweb.org/anthology/D15-1162
http://aclweb.org/anthology/D15-1162
http://aclweb.org/anthology/W12-3602
http://aclweb.org/anthology/W12-3602

Hans Kamp and Uwe Reyle. 2013. From discourse to logic: Introduction to model theoretic
semantics of natural language, formal logic and discourse representation theory, volume 42.
Springer Science & Business Media.

Nitish Shirish Keskar and Richard Socher. 2017. Improving generalization performance by
switching from Adam to SGD. CoRR, abs/1712.07628.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using
bidirectional LSTM feature representations. TACL, 4:313–327.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard. 2016. Improving sentence compression by
learning to predict gaze. In Proc. of NAACL-HLT, pages 1528–1533.

Lingpeng Kong, Alexander M. Rush, and Noah A. Smith. 2015. Transforming dependencies
into phrase structures. In Proc. of NAACL HLT.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer. 2017. Neural
AMR: Sequence-to-sequence models for parsing and generation. In Proc. of ACL, pages
146–157.

Marco Kuhlmann and Joakim Nivre. 2010. Transition-based techniques for non-projective de-
pendency parsing. NEJLT, 2(1):1–19.

Marco Kuhlmann and Stephan Oepen. 2016. Towards a catalogue of linguistic graph banks.
Computational Linguistics.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015. Joint A* CCG parsing and semantic role
labelling. In Proc. of EMNLP, pages 1444–1454.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre. 2017. Old school vs. new school: Com-
paring transition-based parsers with and without neural network enhancement. In Proc. of
TLT, pages 99–110.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A. Smith. 2015. To-
ward abstractive summarization using semantic representations. In Proc. of NAACL, pages
1077–1086.

Xavier Lluís and Lluís Màrquez. 2008. A joint model for parsing syntactic and semantic depen-
dencies. In Proc. of CoNLL, pages 188–192.

Wolfgang Maier. 2015. Discontinuous incremental shift-reduce parsing. In Proc. of ACL, pages
1202–1212.

105

https://arxiv.org/abs/1712.07628
https://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1412.6980
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
https://doi.org/10.18653/v1/N16-1179
https://doi.org/10.18653/v1/N16-1179
https://aclweb.org/anthology/N15-1080
https://aclweb.org/anthology/N15-1080
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://mn.uio.no/ifi/english/people/aca/oe/cl.pdf
https://doi.org/10.18653/v1/D15-1169
https://doi.org/10.18653/v1/D15-1169
http://ceur-ws.org/Vol-1779/08delhoneux.pdf
http://ceur-ws.org/Vol-1779/08delhoneux.pdf
http://aclweb.org/anthology/N15-1114
http://aclweb.org/anthology/N15-1114
http://www.aclweb.org/anthology/W08-2124
http://www.aclweb.org/anthology/W08-2124
http://aclweb.org/anthology/P15-1116

Wolfgang Maier and Timm Lichte. 2009. Characterizing discontinuity in constituent treebanks.
In Proc. of Formal Grammar, number 5591 in Lecture Notes in Artificial Intelligence, pages
167–182, Bordeaux, France. Springer.

Wolfgang Maier and Timm Lichte. 2016. Discontinuous parsing with continuous trees. In Proc.
of Workshop on Discontinuous Structures in NLP, pages 47–57.

Marie-Catherine de Marneffe and Joakim Nivre. 2019. Dependency grammar. Annual Review
of Linguistics, 5(1):197–218.

Héctor Martínez Alonso and Barbara Plank. 2017. When is multitask learning effective? Se-
mantic sequence prediction under varying data conditions. In Proc. of EACL, pages 44–53.

Jonathan May. 2016. SemEval-2016 task 8: Meaning representation parsing. In Proc. of
SemEval, pages 1063–1073.

Jonathan May and Jay Priyadarshi. 2017. SemEval-2017 task 9: Abstract Meaning Represen-
tation parsing and generation. In Proc. of SemEval, pages 536–545.

David McClosky, Eugene Charniak, and Mark Johnson. 2010. Automatic domain adaptation
for parsing. In Proc. of NAACL-HLT, pages 28–36.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013b. Linguistic regularities in continuous
space word representations. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 746–751.

Dipendra K Misra and Yoav Artzi. 2016. Neural shift-reduce CCG semantic parsing. In Proc.
of EMNLP, pages 1775–1786.

Tom M Mitchell. 1980. The need for biases in learning generalizations. Citeseer.

Amir More. 2016. Joint morpho-syntactic processing of morphologically rich languages in a
transition-based framework. Master’s thesis, The Interdisciplinary Center, Herzliya.

Shashi Narayan and Claire Gardent. 2014. Hybrid simplification using deep semantics and
machine translation. In Proc. of ACL, pages 435–445.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios
Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin
Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna

106

http://aclweb.org/anthology/W16-0906
https://doi.org/10.1146/annurev-linguistics-011718-011842
http://www.aclweb.org/anthology/E17-1005
http://www.aclweb.org/anthology/E17-1005
https://doi.org/10.18653/v1/S16-1166
https://doi.org/10.18653/v1/S17-2090
https://doi.org/10.18653/v1/S17-2090
http://www.aclweb.org/anthology/N10-1004
http://www.aclweb.org/anthology/N10-1004
https://arxiv.org/pdf/1301.3781
https://arxiv.org/pdf/1301.3781
http://aclweb.org/anthology/D16-1183
https://www.idc.ac.il/en/schools/cs/research/Documents/amir-mor-thesis.pdf
https://www.idc.ac.il/en/schools/cs/research/Documents/amir-mor-thesis.pdf
http://aclweb.org/anthology/P14-1041
http://aclweb.org/anthology/P14-1041

Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richard-
son, Naomi Saphra, Swabha Swayamdipta, and Pengcheng Yin. 2017. DyNet: The dynamic
neural network toolkit. CoRR, abs/1701.03980.

Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In Proc. of
IWPT, pages 149–160.

Joakim Nivre. 2008. Algorithms for deterministic incremental dependency parsing. Computa-
tional Linguistics, 34(4):513–553.

Joakim Nivre. 2009. Non-projective dependency parsing in expected linear time. In Proc. of
ACL, pages 351–359.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars Ahrenberg, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki Asahara, Luma Ateyah, Mohammed Attia,
Aitziber Atutxa, Liesbeth Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha Baner-
jee, Sebastian Bank, Verginica Barbu Mititelu, Victoria Basmov, John Bauer, Sandra Bel-
lato, Kepa Bengoetxea, Yevgeni Berzak, Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Erica
Biagetti, Eckhard Bick, Rogier Blokland, Victoria Bobicev, Carl Börstell, Cristina Bosco,
Gosse Bouma, Sam Bowman, Adriane Boyd, Aljoscha Burchardt, Marie Candito, Bernard
Caron, Gauthier Caron, Gülşen Cebiroğlu Eryiğit, Flavio Massimiliano Cecchini, Giuseppe
G. A. Celano, Slavomír Čéplö, Savas Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho,
Jayeol Chun, Silvie Cinková, Aurélie Collomb, Çağrı Çöltekin, Miriam Connor, Marine
Courtin, Elizabeth Davidson, Marie-Catherine de Marneffe, Valeria de Paiva, Arantza Diaz de
Ilarraza, Carly Dickerson, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira Droganova,
Puneet Dwivedi, Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaž Erjavec, Aline Etienne,
Richárd Farkas, Hector Fernandez Alcalde, Jennifer Foster, Cláudia Freitas, Katarína Gaj-
došová, Daniel Galbraith, Marcos Garcia, Moa Gärdenfors, Sebastian Garza, Kim Gerdes,
Filip Ginter, Iakes Goenaga, Koldo Gojenola, Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Matias Grioni, Normunds Grūzītis, Bruno Guil-
laume, Céline Guillot-Barbance, Nizar Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ, Na-
Rae Han, Kim Harris, Dag Haug, Barbora Hladká, Jaroslava Hlaváčová, Florinel Hociung,
Petter Hohle, Jena Hwang, Radu Ion, Elena Irimia, Ọlájídé Ishola, Tomáš Jelínek, Anders
Johannsen, Fredrik Jørgensen, Hüner Kaşıkara, Sylvain Kahane, Hiroshi Kanayama, Jenna
Kanerva, Boris Katz, Tolga Kayadelen, Jessica Kenney, Václava Kettnerová, Jesse Kirch-
ner, Kamil Kopacewicz, Natalia Kotsyba, Simon Krek, Sookyoung Kwak, Veronika Laippala,
Lorenzo Lambertino, Lucia Lam, Tatiana Lando, Septina Dian Larasati, Alexei Lavrentiev,
John Lee, Phương Lê Hồng, Alessandro Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying
Li, Josie Li, Keying Li, KyungTae Lim, Nikola Ljubešić, Olga Loginova, Olga Lyashevskaya,
Teresa Lynn, Vivien Macketanz, Aibek Makazhanov, Michael Mandl, Christopher Man-
ning, Ruli Manurung, Cătălina Mărănduc, David Mareček, Katrin Marheinecke, Héctor

107

https://arxiv.org/abs/1701.03980
https://arxiv.org/abs/1701.03980
http://aclweb.org/anthology/W06-2933
http://aclweb.org/anthology/P09-1040

Martínez Alonso, André Martins, Jan Mašek, Yuji Matsumoto, Ryan McDonald, Gustavo
Mendonça, Niko Miekka, Margarita Misirpashayeva, Anna Missilä, Cătălin Mititelu, Yusuke
Miyao, Simonetta Montemagni, Amir More, Laura Moreno Romero, Keiko Sophie Mori,
Shinsuke Mori, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muischnek, Yugo Murawaki,
Kaili Müürisep, Pinkey Nainwani, Juan Ignacio Navarro Horñiacek, Anna Nedoluzhko, Gunta
Nešpore-Bērzkalne, Lương Nguyễn Thị, Huyền Nguyễn Thị Minh, Vitaly Nikolaev, Rat-
tima Nitisaroj, Hanna Nurmi, Stina Ojala, Adédayọ̀ Olúòkun, Mai Omura, Petya Osenova,
Robert Östling, Lilja Øvrelid, Niko Partanen, Elena Pascual, Marco Passarotti, Agnieszka
Patejuk, Guilherme Paulino-Passos, Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Slav
Petrov, Jussi Piitulainen, Emily Pitler, Barbara Plank, Thierry Poibeau, Martin Popel,
Lauma Pretkalniņa, Sophie Prévost, Prokopis Prokopidis, Adam Przepiórkowski, Tiina Puo-
lakainen, Sampo Pyysalo, Andriela Rääbis, Alexandre Rademaker, Loganathan Ramasamy,
Taraka Rama, Carlos Ramisch, Vinit Ravishankar, Livy Real, Siva Reddy, Georg Rehm,
Michael Rießler, Larissa Rinaldi, Laura Rituma, Luisa Rocha, Mykhailo Romanenko, Rudolf
Rosa, Davide Rovati, Valentin Roșca, Olga Rudina, Jack Rueter, Shoval Sadde, Benoît Sagot,
Shadi Saleh, Tanja Samardžić, Stephanie Samson, Manuela Sanguinetti, Baiba Saulīte, Yanin
Sawanakunanon, Nathan Schneider, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker,
Mojgan Seraji, Mo Shen, Atsuko Shimada, Muh Shohibussirri, Dmitry Sichinava, Natalia
Silveira, Maria Simi, Radu Simionescu, Katalin Simkó, Mária Šimková, Kiril Simov, Aaron
Smith, Isabela Soares-Bastos, Carolyn Spadine, Antonio Stella, Milan Straka, Jana Str-
nadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó, Dima Taji, Yuta Takahashi, Takaaki
Tanaka, Isabelle Tellier, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers,
Sumire Uematsu, Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel
van Niekerk, Gertjan van Noord, Viktor Varga, Eric Villemonte de la Clergerie, Veronika
Vincze, Lars Wallin, Jing Xian Wang, Jonathan North Washington, Seyi Williams, Mats
Wirén, Tsegay Woldemariam, Tak-sum Wong, Chunxiao Yan, Marat M. Yavrumyan, Zhuo-
ran Yu, Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman, Manying Zhang, and Hanzhi Zhu.
2018. Universal dependencies 2.3. LINDAT/CLARIN digital library at the Institute of Formal
and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene Antonsen, Maria Jesus Aranzabe, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitziber Atutxa, Liesbeth Augustinus, Elena
Badmaeva, Miguel Ballesteros, Esha Banerjee, Sebastian Bank, Verginica Barbu Mititelu,
John Bauer, Kepa Bengoetxea, Riyaz Ahmad Bhat, Eckhard Bick, Victoria Bobicev, Carl
Börstell, Cristina Bosco, Gosse Bouma, Sam Bowman, Aljoscha Burchardt, Marie Candito,
Gauthier Caron, Gülşen Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Savas Cetin, Fabricio
Chalub, Jinho Choi, Silvie Cinková, Çağrı Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva, Arantza Diaz de Ilarraza, Peter Dirix, Kaja
Dobrovoljc, Timothy Dozat, Kira Droganova, Puneet Dwivedi, Marhaba Eli, Ali Elkahky,
Tomaž Erjavec, Richárd Farkas, Hector Fernandez Alcalde, Jennifer Foster, Cláudia Fre-

108

http://hdl.handle.net/11234/1-2895

itas, Katarína Gajdošová, Daniel Galbraith, Marcos Garcia, Moa Gärdenfors, Kim Gerdes,
Filip Ginter, Iakes Goenaga, Koldo Gojenola, Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Matias Grioni, Normunds Grūzītis, Bruno Guil-
laume, Nizar Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ, Kim Harris, Dag Haug, Barbora
Hladká, Jaroslava Hlaváčová, Florinel Hociung, Petter Hohle, Radu Ion, Elena Irimia, Tomáš
Jelínek, Anders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara, Hiroshi Kanayama, Jenna
Kanerva, Tolga Kayadelen, Václava Kettnerová, Jesse Kirchner, Natalia Kotsyba, Simon
Krek, Veronika Laippala, Lorenzo Lambertino, Tatiana Lando, John Lee, Phương Lê Hồng,
Alessandro Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying Li, Josie Li, Keying Li,
Nikola Ljubešić, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien Macketanz, Aibek
Makazhanov, Michael Mandl, Christopher Manning, Cătălina Mărănduc, David Mareček,
Katrin Marheinecke, Héctor Martínez Alonso, André Martins, Jan Mašek, Yuji Matsumoto,
Ryan McDonald, Gustavo Mendonça, Niko Miekka, Anna Missilä, Cătălin Mititelu, Yusuke
Miyao, Simonetta Montemagni, Amir More, Laura Moreno Romero, Shinsuke Mori, Bohdan
Moskalevskyi, Kadri Muischnek, Kaili Müürisep, Pinkey Nainwani, Anna Nedoluzhko, Gunta
Nešpore-Bērzkalne, Lương Nguyễn Thị, Huyền Nguyễn Thị Minh, Vitaly Nikolaev, Hanna
Nurmi, Stina Ojala, Petya Osenova, Robert Östling, Lilja Øvrelid, Elena Pascual, Marco
Passarotti, Cenel-Augusto Perez, Guy Perrier, Slav Petrov, Jussi Piitulainen, Emily Pitler,
Barbara Plank, Martin Popel, Lauma Pretkalniņa, Prokopis Prokopidis, Tiina Puolakainen,
Sampo Pyysalo, Alexandre Rademaker, Loganathan Ramasamy, Taraka Rama, Vinit Ravis-
hankar, Livy Real, Siva Reddy, Georg Rehm, Larissa Rinaldi, Laura Rituma, Mykhailo Ro-
manenko, Rudolf Rosa, Davide Rovati, Benoît Sagot, Shadi Saleh, Tanja Samardžić, Manuela
Sanguinetti, Baiba Saulīte, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker, Mojgan
Seraji, Mo Shen, Atsuko Shimada, Dmitry Sichinava, Natalia Silveira, Maria Simi, Radu
Simionescu, Katalin Simkó, Mária Šimková, Kiril Simov, Aaron Smith, Antonio Stella, Milan
Straka, Jana Strnadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó, Dima Taji, Takaaki
Tanaka, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Uematsu,
Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van Niekerk, Gert-
jan van Noord, Viktor Varga, Eric Villemonte de la Clergerie, Veronika Vincze, Lars Wallin,
Jonathan North Washington, Mats Wirén, Tak-sum Wong, Zhuoran Yu, Zdeněk Žabokrt-
ský, Amir Zeldes, Daniel Zeman, and Hanzhi Zhu. 2017. Universal dependencies 2.1. LIN-
DAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles University.

Joakim Nivre and Chiao-Ting Fang. 2017. Universal dependency evaluation. In Proceedings of
the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017), pages 86–95.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler, Sve-
toslav Marinov, and Erwin Marsi. 2007. MaltParser: A language-independent system for
data-driven dependency parsing. Natural Language Engineering, 13(02):95–135.

109

http://hdl.handle.net/11234/1-2515

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christo-
pher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsar-
faty, and Daniel Zeman. 2016. Universal dependencies v1: A multilingual treebank collection.
In Proc. of LREC.

Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, and James R Curran. 2013. Learn-
ing multilingual named entity recognition from wikipedia. Artificial Intelligence, 194:151–175.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinkova, Dan
Flickinger, Jan Hajic, Angelina Ivanova, and Zdenka Uresova. 2016. Towards comparability
of linguistic graph banks for semantic parsing. In Proc. of LREC.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinková, Dan
Flickinger, Jan Hajič, and Zdeňka Urešová. 2015. SemEval 2015 task 18: Broad-coverage
semantic dependency parsing. In Proc. of SemEval, pages 915–926.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajič,
Angelina Ivanova, and Yi Zhang. 2014. SemEval 2014 task 8: Broad-coverage semantic
dependency parsing. In Proc. of SemEval, pages 63–72.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An annotated
corpus of semantic roles. Computational Linguistics, 31(1).

Hao Peng, Sam Thomson, and Noah A. Smith. 2017a. Deep multitask learning for semantic
dependency parsing. In Proc. of ACL, pages 2037–2048.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and Noah A. Smith. 2018. Learning joint
semantic parsers from disjoint data. In Proc. of NAACL-HLT.

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Nianwen Xue. 2017b. Addressing the data
sparsity issue in neural AMR parsing. In Proc. of EACL, pages 366–375.

Miriam RL Petruck. 2019. Meaning representation of null instantiated semantic roles in
FrameNet. In Proceedings of the First International Workshop on Designing Meaning Rep-
resentations, pages 121–127.

Barbara Plank. 2016. Keystroke dynamics as signal for shallow syntactic parsing. In Proc. of
COLING, pages 609–619.

Barbara Plank and Gertjan van Noord. 2011. Effective measures of domain similarity for parsing.
In Proc. of ACL-HLT, pages 1566–1576.

Carl Pollard and Ivan Sag. 1994a. Head Driven Phrase Structure Grammar. CSLI Publications,
Stanford, CA.

110

https://nlp.stanford.edu/pubs/nivre2016ud.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/887_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/887_Paper.pdf
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/S14-2008
http://aclweb.org/anthology/S14-2008
http://www.aclweb.org/anthology/J05-1004
http://www.aclweb.org/anthology/J05-1004
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
http://samthomson.com/papers/peng+etal.naacl2018.pdf
http://samthomson.com/papers/peng+etal.naacl2018.pdf
http://aclweb.org/anthology/E17-1035
http://aclweb.org/anthology/E17-1035
http://www.aclweb.org/anthology/C16-1059
http://www.aclweb.org/anthology/P11-1157

Carl Pollard and Ivan A Sag. 1994b. Head-driven phrase structure grammar. University of
Chicago Press.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo Rosso, Efstathios Stamatatos, and Benno
Stein. 2014. Improving the reproducibility of PAN’s shared tasks: Plagiarism detection, au-
thor identification, and author profiling. In Information Access Evaluation meets Multilin-
guality, Multimodality, and Visualization. 5th International Conference of the CLEF Initiative
(CLEF 14), pages 268–299, Berlin Heidelberg New York. Springer.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and Kevin Knight. 2014. Aligning English
strings with Abstract Meaning Representation graphs. In Proc. of EMNLP, pages 425–429.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel Marcu, and Jonathan May. 2015. Parsing
English into Abstract Meaning Representation using syntax-based machine translation. In
Proc. of EMNLP, pages 1143–1154.

Siva Reddy, Oscar Täckström, Michael Collins, Tom Kwiatkowski, Dipanjan Das, Mark Steed-
man, and Mirella Lapata. 2016. Transforming dependency structures to logical forms for
semantic parsing. TACL, 4:127–141.

Siva Reddy, Oscar Täckström, Slav Petrov, Mark Steedman, and Mirella Lapata. 2017. Universal
semantic parsing. In Proc. of EMNLP, pages 89–101.

Corentin Ribeyre, Eric Villemonte de la Clergerie, and Djamé Seddah. 2014. Alpage: Transition-
based semantic graph parsing with syntactic features. In Proc. of SemEval, pages 97–103.

Michael Roth and Anette Frank. 2015. Inducing Implicit Arguments from Comparable Texts:
A Framework and its Applications. Computational Linguistics, 41:625–664.

Rachel Rudinger and Benjamin Van Durme. 2014. Is the Stanford dependency representation
semantic? In Proc. of EVENTS, pages 54–58.

Josef Ruppenhofer, Michael Ellsworth, Miriam R. L Petruck, Christopher R. Johnson, Collin F.
Baker, and Jan Scheffczyk. 2016. FrameNet II: Extended Theory and Practice.

Kenji Sagae and Alon Lavie. 2005. A classifier-based parser with linear run-time complexity.
In Proc. of IWPT, pages 125–132.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce dependency DAG parsing. In Proc. of
COLING, pages 753–760.

Sanjiv Kumar Sashank J. Reddi, Satyen Kale. 2018. On the convergence of Adam and beyond.
ICLR.

111

https://doi.org/10.1007/978-3-319-11382-1_{}22
https://doi.org/10.1007/978-3-319-11382-1_{}22
http://aclweb.org/anthology/D14-1048
http://aclweb.org/anthology/D14-1048
http://aclweb.org/anthology/D15-1136
http://aclweb.org/anthology/D15-1136
http://aclweb.org/anthology/Q16-1010
http://aclweb.org/anthology/Q16-1010
http://aclweb.org/anthology/D17-1009
http://aclweb.org/anthology/D17-1009
http://aclweb.org/anthology/S14-2012
http://aclweb.org/anthology/S14-2012
https://doi.org/10.3115/v1/W14-2908
https://doi.org/10.3115/v1/W14-2908
https://framenet.icsi.berkeley.edu/fndrupal/the_book
http://aclweb.org/anthology/W05-1513
http://aclweb.org/anthology/C08-1095
https://openreview.net/forum?id=ryQu7f-RZ

Natalie Schluter, Anders Søgaard, Jakob Elming, Dirk Hovy, Barbara Plank, Héctor
Martínez Alonso, Anders Johanssen, and Sigrid Klerke. 2014. Copenhagen-Malmö: Tree
approximations of semantic parsing problems. In Proc. of SemEval, pages 213–217.

Nathan Schneider. 2014. Lexical Semantic Analysis in Natural Language Text. Ph.D. disserta-
tion, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

Nathan Schneider, Emily Danchik, Chris Dyer, and Noah A Smith. 2014. Discriminative lexical
semantic segmentation with gaps: running the MWE gamut. TACL, 2:193–206.

Nathan Schneider, Jena D. Hwang, Vivek Srikumar, Jakob Prange, Austin Blodgett, Sarah R.
Moeller, Aviram Stern, Adi Bitan, and Omri Abend. 2018. Comprehensive supersense dis-
ambiguation of English prepositions and possessives. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, Melbourne, Australia. Association
for Computational Linguistics.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681.

Sebastian Schuster and Christopher D. Manning. 2016. Enhanced English Universal Depen-
dencies: An improved representation for natural language understanding tasks. In Proc. of
LREC. ELRA.

Roy Schwartz, Omri Abend, and Ari Rappoport. 2012. Learnability-based syntactic annotation
design. In Proc. of COLING, pages 2405–2422.

Natalia Silveira, Timothy Dozat, Marie-Catherine de Marneffe, Samuel Bowman, Miriam Con-
nor, John Bauer, and Chris Manning. 2014. A gold standard dependency corpus for English.
In Proc. of LREC.

Richard Socher, Christopher D Manning, and Andrew Y Ng. 2010. Learning continuous phrase
representations and syntactic parsing with recursive neural networks. In Proceedings of the
NIPS-2010 deep learning and unsupervised feature learning workshop, volume 2010, pages
1–9.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-task learning with low level tasks super-
vised at lower layers. In Proc. of ACL, pages 231–235.

112

http://aclweb.org/anthology/S14-2034
http://aclweb.org/anthology/S14-2034
http://www.cs.cmu.edu/~nschneid/thesis/thesis-print.pdf
http://aclweb.org/anthology/Q14-1016.pdf
http://aclweb.org/anthology/Q14-1016.pdf
https://nlp.stanford.edu/pubs/schuster2016enhanced.pdf
https://nlp.stanford.edu/pubs/schuster2016enhanced.pdf
http://aclweb.org/anthology/C12-1147
http://aclweb.org/anthology/C12-1147
http://www.aclweb.org/anthology/L14-1067
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/P16-2038

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958.

Gabriel Stanovsky, Jessica Ficler, Ido Dagan, and Yoav Goldberg. 2016. Getting more out of
syntax with PropS. arXiv preprint arXiv:1603.01648.

Mark Steedman. 2000. The Syntactic Process. MIT Press, Cambridge, MA.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UDPipe: trainable pipeline for processing
CoNLL-U files performing tokenization, morphological analysis, POS tagging and parsing.
In Proceedings of the 10th International Conference on Language Resources and Evaluation
(LREC 2016), Portorož, Slovenia. European Language Resources Association.

Milan Straka and Jana Straková. 2017. Tokenizing, POS tagging, lemmatizing and parsing UD
2.0 with UDPipe. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages 88–99, Vancouver, Canada. Association for
Computational Linguistics.

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic role labeling. In Proc. of EMNLP, pages
5027–5038.

Elior Sulem, Omri Abend, and Ari Rappoport. 2015. Conceptual annotations preserve structure
across translations: A French-English case study. In Proc. of S2MT, pages 11–22.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018a. Semantic structural annotation for text
simplification. In Proc. of NAACL.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018b. Simple and effective text simplification
using semantic and neural methods. In Proc. of ACL.

Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluís Màrquez, and Joakim Nivre. 2008.
The CoNLL 2008 shared task on joint parsing of syntactic and semantic dependencies. In
Proc. of CoNLL, pages 159–177.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2016a. Greedy,
joint syntactic-semantic parsing with stack LSTMs. In Proc. of CoNLL, pages 187–197.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2016b. Greedy,
joint syntactic-semantic parsing with stack LSTMs. In Proc. of CoNLL, pages 187–197.

113

http://jmlr.org/papers/v15/srivastava14a.html
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://aclweb.org/anthology/D18-1548
http://aclweb.org/anthology/W15-3502
http://aclweb.org/anthology/W15-3502
http://www.aclweb.org/anthology/W08-2121
http://aclweb.org/anthology/K16-1019
http://aclweb.org/anthology/K16-1019
https://doi.org/10.18653/v1/K16-1019
https://doi.org/10.18653/v1/K16-1019

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and Noah A. Smith. 2017. Frame-semantic
parsing with softmax-margin segmental rnns and a syntactic scaffold. CoRR, abs/1706.09528.

Swabha Swayamdipta, Sam Thomson, Kenton Lee, Luke Zettlemoyer, Chris Dyer, and Noah A.
Smith. 2018. Syntactic scaffolds for semantic structures. In Proc. of EMNLP, pages
3772–3782.

Ida Szubert, Adam Lopez, and Nathan Schneider. 2018. A structured syntax-semantics interface
for English-AMR alignment. In Proc. of NAACL-HLT. To appear.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic rep-
resentations from tree-structured long short-term memory networks. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
1556–1566, Beijing, China. Association for Computational Linguistics.

Sam Thomson, Brendan O’Connor, Jeffrey Flanigan, David Bamman, Jesse Dodge, Swabha
Swayamdipta, Nathan Schneider, Chris Dyer, and Noah A. Smith. 2014. CMU: Arc-factored,
discriminative semantic dependency parsing. In Proc. of SemEval, pages 176–180.

Alper Tokgöz and Gülsen Eryiğit. 2015. Transition-based dependency DAG parsing using dy-
namic oracles. In Proc. of ACL Student Research Workshop, pages 22–27.

Kristina Toutanova, Aria Haghighi, and Christopher Manning. 2005. Joint learning improves
semantic role labeling. In Proc. of ACL, pages 589–596.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: a simple and
general method for semi-supervised learning. In Proceedings of the 48th annual meeting of
the association for computational linguistics, pages 384–394. Association for Computational
Linguistics.

Lucy Vanderwende, Arul Menezes, and Chris Quirk. 2015. An AMR parser for English, French,
German, Spanish and Japanese and a new AMR-annotated corpus. In Proc. of NAACL,
pages 26–30.

Abigail Walsh, Claire Bonial, Kristina Geeraert, John P. McCrae, Nathan Schneider, and
Clarissa Somers. 2018. Constructing an annotated corpus of verbal MWEs for English. In
Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and
Constructions, Santa Fe, New Mexico, USA. Association for Computational Linguistics.

Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng Ji, and Nianwen Xue. 2016. CAMR at
SemEval-2016 task 8: An extended transition-based AMR parser. In Proc. of SemEval, pages
1173–1178.

114

https://arxiv.org/abs/1706.09528
https://arxiv.org/abs/1706.09528
http://aclweb.org/anthology/D18-1412
http://people.cs.georgetown.edu/nschneid/p/amr2dep.pdf
http://people.cs.georgetown.edu/nschneid/p/amr2dep.pdf
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
http://aclweb.org/anthology/S14-2027
http://aclweb.org/anthology/S14-2027
http://aclweb.org/anthology/P15-3004
http://aclweb.org/anthology/P15-3004
http://www.aclweb.org/anthology/P05-1073
http://www.aclweb.org/anthology/P05-1073
http://aclweb.org/anthology/N15-3006
http://aclweb.org/anthology/N15-3006
http://aclweb.org/anthology/S16-1181
http://aclweb.org/anthology/S16-1181

Chuan Wang and Nianwen Xue. 2017. Getting the most out of AMR parsing. In Proc. of
EMNLP, pages 1257–1268.

Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015a. Boosting transition-based AMR
parsing with refined actions and auxiliary analyzers. In Proc. of ACL, pages 857–862.

Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015b. A transition-based algorithm for
AMR parsing. In Proc. of NAACL, pages 366–375.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance
Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, et al. 2013.
OntoNotes release 5.0 LDC2013T19. Linguistic Data Consortium, Philadelphia, PA.

KeenonWerling, Gabor Angeli, and Christopher D. Manning. 2015. Robust subgraph generation
improves Abstract Meaning Representation parsing. In Proc. of ACL, pages 982–991.

Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng Zhang, Rachel
Rudinger, Kyle Rawlins, and Benjamin Van Durme. 2016. Universal decompositional seman-
tics on universal dependencies. In Proc. of EMNLP, pages 1713–1723.

Nianwen Xue and Martha Palmer. 2004. Calibrating features for semantic role labeling. In
Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Potthast, Milan Straka, Filip Ginter, Joakim
Nivre, and Slav Petrov. 2018. CoNLL 2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies, pages 1–20, Brussels, Belgium. Association
for Computational Linguistics.

Sheng Zhang, Rachel Rudinger, and Benjamin Van Durme. 2017. An evaluation of PredPatt
and open IE via stage 1 semantic role labeling. In IWCS.

Yuan Zhang and David Weiss. 2016. Stack-propagation: Improved representation learning for
syntax. In Proc. of ACL, pages 1557–1566.

Yue Zhang and Stephen Clark. 2009. Transition-based parsing of the Chinese treebank using a
global discriminative model. In Proc. of IWPT, pages 162–171.

Yue Zhang and Stephen Clark. 2011. Shift-reduce CCG parsing. In Proc. of ACL, pages 683–692.

Junsheng Zhou, Feiyu Xu, Hans Uszkoreit, Weiguang Qu, Ran Li, and Yanhui Gu. 2016. AMR
parsing with an incremental joint model. In Proc. of EMNLP, pages 680–689.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. 2013. Fast and accurate
shift-reduce constituent parsing. In Proc. of ACL, pages 434–443.

115

http://www.aclweb.org/anthology/D17-1129
http://aclweb.org/anthology/P15-2141
http://aclweb.org/anthology/P15-2141
http://aclweb.org/anthology/N15-1040
http://aclweb.org/anthology/N15-1040
https://catalog.ldc.upenn.edu/LDC2013T19
http://aclweb.org/anthology/P15-1095
http://aclweb.org/anthology/P15-1095
http://aclweb.org/anthology/W17-6944
http://aclweb.org/anthology/W17-6944
https://doi.org/10.18653/v1/P16-1147
https://doi.org/10.18653/v1/P16-1147
http://aclweb.org/anthology/W09-3825
http://aclweb.org/anthology/W09-3825
http://aclweb.org/anthology/P11-1069
http://aclweb.org/anthology/D16-1065
http://aclweb.org/anthology/D16-1065
http://aclweb.org/anthology/P13-1043
http://aclweb.org/anthology/P13-1043

Yftah Ziser and Roi Reichart. 2017. Neural structural correspondence learning for domain
adaptation. In Proc. of CoNLL, pages 400–410.

Will Y Zou, Richard Socher, Daniel Cer, and Christopher D Manning. 2013. Bilingual word
embeddings for phrase-based machine translation. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pages 1393–1398.

116

https://doi.org/10.18653/v1/K17-1040
https://doi.org/10.18653/v1/K17-1040

Appendix A

A Transition-Based Directed Acyclic
Graph Parser for UCCA
Supplementary Notes

A.1 Feature Templates

Figure A.1 presents the feature templates used by TUPASparse. All feature templates
define binary features. The other classifiers use the same elements listed in the feature
templates, but all categorical features are replaced by vector embeddings, and all count-
based features are replaced by their numeric value.

For some of the features, we used the notion of head word, defined by the h∗ function
(see Appendix A.4). While head words are not explicitly represented in the UCCA
scheme, these features prove useful as means of encoding word-to-word relations.

A.2 Extended Presentation of UCCA

This work does not handle two important constructions in the UCCA foundational layer:
Linkage, representing discourse relations, and Implicit, representing covert entities. Ta-
ble A.1 shows the statistics of linkage nodes and edges and implicit nodes in the corpora.

Linkage. Figure A.2 demonstrates a linkage relation, omitted from Figure 3.1a. The
linkage relation is represented by the gray node. LA is link argument, and LR is link
relation. The relation represents the fact that the linker “After” links the two parallel
scenes that are the arguments of the linkage. Linkage relations are another source of
multiple parents for a node, which we do not yet handle in parsing and evaluation.

117

Wiki 20K
Train Dev Test Leagues

nodes
implicit 899 122 77 241
linkage 2956 263 359 376
edges
linkage 9276 803 1094 957

Table A.1: Statistics of linkage and implicit nodes in the Wiki and 20K Leagues UCCA
corpora. Cf. Table 3.1.

After
L

graduation
P

H

,
U

John
A

moved
P

to
R

Paris
C

A

H

A

LR

LA

LA

Figure A.2: UCCA example with linkage.

Implicit units. UCCA graphs may contain implicit units with no correspondent in the
text. Figure A.3 shows the annotation for the sentence “A similar technique is almost
impossible to apply to other crops, such as cotton, soybeans and rice.”. The sentence was
used by Oepen et al. (2015) to compare between different semantic dependency schemes.
It includes a single scene, whose main relation is “apply”, a secondary relation “almost
impossible”, as well as two complex arguments: “a similar technique” and the coordinated
argument “such as cotton, soybeans, and rice.” In addition, the scene includes an implicit
argument, which represents the agent of the “apply” relation.

The parsing of these units is deferred to future work, as it is likely to require different
methods than those explored in this paper (Roth and Frank, 2015).

A.3 Hyperparameter Values

Table A.2 lists the hyperparameter values we found for the different classifiers by tuning
on the development set. Note that learning rate decay is multiplicative and is applied at
each epoch. Mini-batch size is in number of transitions, but a mini-batch must contain
only whole sentences.

118

Sparse MLP BiLSTM
Embedding dimensions
external word 100 100
word 200 200
POS tag 20 20
syntactic dep. 10 10
edge label 20 20
punctuation 1 1
gap 3 3
action 3 3

Sparse MLP BiLSTM
Other parameters
training epochs 19 28 59
MinUpdate 5
initial learning rate 1 1 1
learning rate decay 0.1 1 1
MLP #layers 2 2
MLP layer dim. 100 50
LSTM #layers 2
LSTM layer dim. 500
word dropout 0.2 0.2
dropout 0.4 0.4
weight decay 10−5 10−5

mini-batch size 100 100

Table A.2: Hyperparameters used for the different classifiers.

A.4 Bilexical Graph Conversion

Here we describe the algorithms used in the conversion referred to in Section 3.4.

Notation. Let L be the set of possible edge labels. A UCCA graph over a sequence
of tokens w1, . . . , wn is a directed acyclic graph G = (V,E, `), where ` : E → L maps
edges to labels. For each token wi there exists a leaf (terminal) ti ∈ V . A bilexical
(dependency) graph over the same text consists of a set A of labeled dependency arcs
(t′, l, t) between the terminals of G, where t′ is the head, t is the dependent and l is the
edge label.

Conversion to bilexical graphs. Let G = (V,E, `) be a UCCA graph with labels
` : E → L. The conversion to a bilexical graph requires calculating the set A. All
non-terminals in G are removed.

We define a linear order over possible edge labels L (see Figure A.4b). The prior-
ity order generally places core-like categories before adjunct-like ones, and was decided
heuristically. For each node u ∈ V , denote by h(u) its child with the highest-priority edge
label. The leftmost edge is chosen in case of a tie. Let h∗(u) be the terminal reached by
recursively applying h(·) over u. For each terminal t, we define

N(t) = {(u, v) ∈ E | t = h∗(v) ∧ t 6= h∗(u)}

For each edge (u, v) ∈ N(t), we add h∗(u) as a head of t in A, with the label `(u, v). This
procedure is given in Algorithm A.4a.

119

Data: UCCA graph G = (V,E, `)

Result: set A of labeled bilexical arcs
A← ∅;
foreach t ∈ Terminals(V) do

foreach (u, v) ∈ N(t) do
A← A ∪ {(h∗(u), `(u, v), t)};

end
end

(a) Conversion to bilexical graphs.

1. C (Center)

2. N (Connector)

3. H (ParallelScene)

4. P (Process)

5. S (State)

6. A (Participant)

7. D (Adverbial)

8. T (Time)

9. E (Elaborator)

10. R (Relator)

11. F (Function)

12. L (Linker)

13. LR (LinkRelation)

14. LA (LinkArgument)

15. G (Ground)

16. Terminal

17. U (Punctuation)

(b) Priority order of edge labels used by h(u).

Figure A.4

Note that this conversion procedure is simpler than the head percolation procedure
used for converting syntactic constituency trees to dependency trees (Collins, 1997), since
h(u) (similar to u’s head-containing child) depends only on `(u, h(u)) and not on the sub-
tree spanned by u, because edge labels in UCCA directly express the role of the child in
the parent unit, and are thus sufficient for determining which of u’s children contains the
head node.

Conversion from bilexical graphs. The inverse conversion introduces non-terminal
nodes back into the graph. As the distinction between low- and high-attaching nodes is
lost in the conversion, we assume that attachments are always low-attaching. Let A be a
the labeled arc set of a bilexical graph. Iterating over the terminals in topological order
according to A, we add its members as terminals to graph and create a pre-terminal parent
ut for each terminal t, with an edge labeled as Terminal between them. The parents of
the pre-terminals are determined by the terminal’s parent in the bilexical graph: if t′ is a
head of t in A, then ut′ will be a parent of ut. We add an intermediate node in between
if t has any dependents in A, to allow adding their pre-terminals as children later. Edge
labels for the intermediate edges are determined by a rule-based function, denoted by
Label(t). This procedure is given in Algorithm 1.

A.5 Proof Sketch for Completeness of the TUPA Tran-
sition Set

Here we sketch a proof for the fact that the transition set defined in Section 3.3 is capable
of producing any rooted, labeled, anchored DAG. This proves that the transition set is
complete with respect to the class of graphs that comprise UCCA.

120

Let G = (V,E, `) be a graph with labels ` : E → L over a sequence of tokens
w1, . . . , wn. Parsing starts with w1, . . . , wn on the buffer, and the root node on the stack.

First we show that every node can be created, by induction on the node height: every
terminal (height zero) already exists at the beginning of the parse (and so does the root
node). Let v ∈ V be of height k, and assume all nodes of height less than k can be created.
Take any (primary) child u of v: its height must be less than k. If u is a terminal, apply
Shift until it lies at the head of the buffer. Otherwise, by our assumption, u can still
be created. Right after u is created, it lies at the head of the buffer. A Shift transition
followed by a Node`(v,u) transition will move u to the stack and create v on the buffer,
with the correct edge label.

Next, we show that every edge can be created. Let (v, u) ∈ E be any edge with
parent v and child u. Assume v and u have both been created (we already showed that
both are created eventually). If either v or u are in the buffer, apply Shift until both
are in the stack. If both are in the stack but neither is at the stack top, apply Swap
transitions until either moves to the buffer, and then apply Shift. Now, assume either v
or u is at the stack top. If the other is not the second element on the stack, apply Swap
transitions until it is. Finally, v and u are the top two elements on the stack. If they
are in that order, apply Right-Edge`(v,u) (or Right-Remote`(v,u) if the edge between
them is remote). Otherwise, apply Left-Edge`(v,u) (or Left-Remote`(v,u) if the edge
between them is remote). This creates (v, u) with the correct edge label.

Once all nodes and edges have been created, we can apply Reduce until only the
root node remains on the stack, and then Finish. This yields exactly the graph G.

Note that the distinction we made between primary and remote transitions is suitable
for UCCA parsing. For general graph parsing without this distinction, the Remote
transitions can be removed, as well as the single-primary-parent restriction on Edge
transition.

121

Features from (Zhang and Clark, 2009):
unigrams
s0tde, s0we, s1tde, s1we, s2tde, s2we, s3tde, s3we,
b0wtd, b1wtd, b2wtd, b3wtd,
s0lwe, s0rwe, s0uwe, s1lwe, s1rwe, s1uwe
bigrams
s0ws1w, s0ws1e, s0es1w, s0es1e, s0wb0w, s0wb0td,
s0eb0w, s0eb0td, s1wb0w, s1wb0td, s1eb0w, s1eb0td,
b0wb1w, b0wb1td, b0tdb1w, b0tdb1td
trigrams
s0es1es2w, s0es1es2e, s0es1eb0w, s0es1eb0td,
s0es1wb0w, s0es1wb0td, s0ws1es2e, s0ws1eb0td
separator
s0wp, s0wep, s0wq, s0wcq, s0es1ep, s0es1eq,
s1wp, s1wep, s1wq, s1weq
extended (Zhu et al., 2013)
s0llwe, s0lrwe, s0luwe, s0rlwe, s0rrwe,
s0ruwe, s0ulwe, s0urwe, s0uuwe, s1llwe,
s1lrwe, s1luwe, s1rlwe, s1rrwe, s1ruwe

disco (Maier, 2015)
s0xwe, s1xwe, s2xwe, s3xwe,
s0xtde, s1xtde, s2xtde, s3xtde,
s0xy, s1xy, s2xy, s3xy
s0xs1e, s0xs1w, s0xs1x, s0ws1x, s0es1x,
s0xs2e, s0xs2w, s0xs2x, s0ws2x, s0es2x,
s0ys1y, s0ys2y, s0xb0td, s0xb0w
Features from (Tokgöz and Eryiğit, 2015):
counts
s0P, s0C, s0wP, s0wC, b0P, b0C, b0wP, b0wC
edges
s0s1, s1s0, s0b0, b0s0, s0b0e, b0s0e
history
a0, a1
remote (Novel, UCCA-specific features)
s0R, s0wR, b0R, b0wR

Figure A.1: Binary feature templates for TUPASparse. Notation:
si, bi: ith stack and buffer items.
w, t, d: word form, POS tag and syntactic dependency label of the terminal returned by
h∗(·) (see Appendix A.4).
e: edge label to the node returned by h(·).
l, r (ll, rr): leftmost and rightmost (grand)children.
u (uu): unary (grand)child, when only one exists.
p: unique separator punctuation between s0 and s1. q: separator count.
x: gap type (“none”, “pass” or “gap”) at the sub-graph under the current node.
y: sum of gap lengths (Maier and Lichte, 2009).
P , C: number of parents and children.
R: number of remote children.
ai: action taken i steps back.

A

E

similar

E

technique

C

A

is

F

almost

E

impossible

C

D

IMPLICIT

A

to

F

apply

P

to

R

other

E

crops

C

,

U

such as

R

cotton

C

,

U

soybeans

C

and

N

rice

C

E

A

.

U

Figure A.3: UCCA example with an implicit unit.

122

Data: list T of terminals, set A of labeled bilexical arcs
Result: UCCA graph G = (V,E, `)
V ← ∅, E ← ∅;
foreach t ∈ TopologicalSort(T,A) do

ut ← Node();
V ← V ∪ {ut, t}, E ← E ∪ {(ut, t)};
`(ut, t)← Terminal;
foreach t′ ∈ T, l ∈ L do

if (t′, l, t) ∈ A then
if ∃t′′ ∈ T, l′ ∈ L : (t, l′, t′′) ∈ A then

u← Node();
V ← V ∪ {u}, E ← E ∪ {(u, ut)};
`(u, ut)← Label(t);

else
u← ut;

end
E ← E ∪ {(ut′ , u)};
`(ut′ , u)← l;

end
end

end
Function Label

Data: node t ∈ T
Result: label l ∈ L
if IsPunctuation(t) then

return Punctuation;
else if ∃t′ ∈ T : (t,ParallelScene, t′) ∈ A then

return ParallelScene;
else if ∃t′ ∈ T : (t,Participant, t′) ∈ A then

return Process;
else

return Center ;
Algorithm 1: Conversion from bilexical graphs.

123

Appendix B

Multitask Parsing Across Semantic
Representations
Supplementary Notes

B.1 Features

Table B.1 lists all feature used for the classifier (see §4.4.2). Numeric features are taken
as they are, whereas categorical features are mapped to real-valued embedding vectors.
For w features, we concatenate randomly-initialized and pre-trained word embeddings.
For each node, we select a head terminal by traversing the graph according to a priority
order on edge labels, taken from Hershcovich et al. (2017).

si refers to stack node i from the top, and bi to buffer node i. xl and xr refer to a x’s
leftmost and rightmost children, and xL and xR to its leftmost and rightmost parents.

w refers to the node’s head terminal text, t to its POS tag, and d to its dependency
relation. h refers to the node’s height, e to the tag of its first incoming edge, n and c to the
node label and category (used only for AMR), p to any separator punctuation between s0

and s1, q to the count of any separator punctuation between s0 and s1, x to the numeric
value of gap type (Maier and Lichte, 2016), y to the sum of gap lengths, P, C, I, E,
and M to the number of parents, children, implicit children, remote children, and remote
parents, N to the numeric value of the head terminal’s named entity IOB indicator, T to
its named entity type, # to its word shape (capturing orthographic features, e.g. ”Xxxx”
or ”dd”), ^ to its one-character prefix, and $ to its three-character suffix.

x → y refers to the existing edge from x to y. x is an indicator feature, taking
the value of 1 if the edge exists or 0 otherwise, e refers to the edge label, and d to the
dependency distance between the head terminals of the nodes.

ai to the transition taken i + 1 steps ago. A refers to the action type label (e.g.

124

shift/right-edge/node), and e to the edge label created by the action (e.g. C/E/P).
node ratio is the ratio between non-terminals and terminals, taken from Hershcovich

et al. (2017).

Nodes Features
s0 wtdencpT#^$xhqyPCIEMN
s1 wtdencT#^$xhyN
s2 wtdencT#^$xhy
s3 wtdencT#^$xhyN
b0 wtdncT#^$hPCIEMN
b1, b2, b3 wtdncT#^$
s0l, s0r, s1l, s1r, s0ll, s0lr, s0rl, s0rr, s1ll, s1lr, s1rl, s1rr wenc#^$
s0L, s0R, s1L, s1R, b0L, b0R wen#^$
Edges
s0 → s1, s0 → b0 xd
s1 → s0, b0 → s0 x
s0 → b0, b0 → s0 e
Past actions
a0, a1 eA
Misc. node ratio

Table B.1: Transition classifier features.

B.2 Conversion to and from Unified DAG Format

Although all experiments reported in the paper with the auxiliary tasks (AMR, DM and
UD) are using unlabeled parsing for these schemes, our conversion code supports full
conversion to and from these formats, and is publicly available at http://github.com/
danielhers/semstr/tree/master/semstr/conversion.

Conversion from AMR to the unifid DAG format and back results in 95% Smatch
F1 (Cai and Knight, 2013) when averaged over the LDC2017T10 test set. On SDP, the
conversion is lossless and results in identical graphs when converted to UCCA and back.
For UD, and conversion results in 98.5% LAS F1 on the UD English test set, due to
multi-word tokens, not supported in the unified DAG format.

B.3 Qualitative evaluation

Figure B.1 shows an example sentence from the English 20K test set, with the outputs
of both our single-task model and our best MTL model (using all auxiliaries). While the
single-task model obtains an F1 score of 67.9% on this sentence, the MTL model’s output
matches the gold-annotates graph perfectly. This example demonstrates how the parser’s
ability to identify syntactic constituents, which is important for all tasks we tackled, is
improved with MTL.

125

http://github.com/danielhers/semstr/tree/master/semstr/conversion
http://github.com/danielhers/semstr/tree/master/semstr/conversion

N
o

E

tr
an

so
ce

an
ic

E

na
vi

ga
tio

na
l

E

un
de

rt
ak

in
g

C

A

ha
s

F

be
enE

co
nd

uc
te

d

C

P

w
ith

R

m
or

e

E

ab
ili

ty

C

C

,U

no

E

bu
sin

es
sE

de
al

in
gs

C

C

C

C

A

H

ha
ve

F

be
enE

cr
ow

ne
d

C

P

w
ith

R

gr
ea

te
r

D

su
cc

es
s

P

A

H

.

U

N
o

E

tr
an

so
ce

an
ic

E

na
vi

ga
tio

na
l

E

un
de

rt
ak

in
g

C

A

ha
s

F

be
enF

co
nd

uc
te

d

C

P

w
ith

R

m
or

eE

ab
ili

ty

C

A

H

,

U

no

E bu
sin

es
s

E

de
al

in
gs

C

A

ha
ve

F

be
enF

cr
ow

ne
d

C

P

w
ith

R

gr
ea

te
r

E

su
cc

es
s

C

A

H

.

U

Fi
gu

re
B

.1
:

O
ut

pu
t

of
sin

gl
e-

ta
sk

m
od

el
on

se
nt

en
ce

53
00

1
fro

m
th

e
En

gl
ish

20
K

te
st

se
t

(t
op

),
an

d
of

M
T

L
m

od
el

us
in

g
al

lo
f

A
M

R
,D

M
an

d
U

D
+
+

as
au

xi
lia

rie
s

on
th

e
sa

m
e

se
nt

en
ce

(b
ot

to
m

).

126

Appendix C

Content Differences in Syntactic and
Semantic Representation
Supplementary Material

C.1 UCCA Category Definitions

Table C.1 provides a concise description of the categories used by the UCCA foundational
layer.

127

Scene Elements
P Process The main relation of a Scene that evolves in time (usually an action or movement).
S State The main relation of a Scene that does not evolve in time.
A Participant A participant in a Scene in a broad sense (including locations, abstract entities

and Scenes serving as arguments).
D Adverbial A secondary relation in a Scene.
T Time A temporal relation in a Scene.

Elements of Non-Scene Units
C Center Necessary for the conceptualization of the parent unit.
E Elaborator A non-Scene relation which applies to a single Center.
N Connector A non-Scene relation which applies to two or more Centers, highlighting a common

feature.
R Relator All other types of non-Scene relations. Two varieties: (1) Rs that relate a C to

some super-ordinate relation, and (2) Rs that relate two Cs pertaining to different
aspects of the parent unit.

Q Quantifier Describing the quantity or magnitude of something, or defines an entity as a group
or a set (e.g., “two” or “a group of”).

Inter-Scene Relations
H Parallel

Scene
A Scene linked to other Scenes by regular linkage (e.g., temporal, logical, purpo-
sive).

L Linker A relation between two or more Hs (e.g., “when”, “if”, “in order to”).
G Ground A relation between the speech event and the uttered Scene (e.g., “surprisingly”,

“in my opinion”).
Other

F Function Does not introduce a relation or participant. Required by the structural pattern
it appears in.

Table C.1: The complete set of categories in UCCA’s foundational layer.

C.2 Universal Dependencies Category Definitions

Table C.2 lists the full names of the relation labels used by Universal Dependencies v2.

128

acl clausal modifier of noun (adjectival clause)
advcl adverbial clause modifier
advmod adverbial modifier
amod adjectival modifier
appos appositional modifier
aux auxiliary
case case marking
cc coordinating conjunction
ccomp clausal complement
clf classifier
compound compound
conj conjunct
cop copula
csubj clausal subject
dep unspecified dependency
det determiner
discourse discourse element
dislocated dislocated elements
expl expletive

fixed fixed multiword expression
flat flat multiword expression
goeswith goes with
iobj indirect object
list list
mark marker
nmod nominal modifier
nsubj nominal subject
nummod numeric modifier
obj object
obl oblique nominal
orphan orphan
parataxis parataxis
punct punctuation
reparandum overridden disfluency
root root
vocative vocative
xcomp open clausal complement

Table C.2: UD v2 relations.

129

ריצקת

תויהלהרטמכומצעלםשרשאםוחת,תיעבטהפשתנבהלשדקומתיעבטהפשדוביעבברץמאמ
ןתינםימייוסמםישומישלדועב.דמולמןפואבויפלעלועפלו,םיקסיהונממשיקהל,טסקטןיבהללגוסמ
וא)םילמקשגוסמםילדומ(םילמהרדסמןיטולחלתומלעתמרשא,תיסחיתוטושפתוטישבשמתשהל
םינוריונתותשרלתרשפאמה,הצופנהףצרל-ףצרהתטישומכ(הטושפתרשרשכוילאתוסחייתמ
הזגוצייתיינב.תועמשמלשיכרריהגוצייתשרודיללכןפואבטסקטתנבה,)ללוכןפואבתומישמדומלל
םיברםייטנמסםיגוציידועב.יטנמסהחותינהםוחתבהבחרתודובעתרדסלשהתרטמאיהטסקטהמ
םיטקידרפןיבלשמלומכ,תויסיסבהתונחבאלעגונבףתושמהןמהברהםהיניבשי,הכדעועצוה
.)םיפתתשמ(םיטנמוגראןיבו)םיעוריאוםיבצמ,םיסחי(
הכימתםהולשםיירקיעהםיחנמהתונורקעהרשא,ACCUםשבםייוסמיטנמסגוצייבתדקמתמוזהזת
החמומוניאשימידיבוליפא(גויתהתולק,תופשןיבתוביציוהכימת,תויטנמסהתוינושלהתועפותהלכב
יטמוטואחתנמ.תיטנמסהיצטונאלשתונושתובכשבתכמותהתירלודומהרוטקטיכראו,)תונשלבב
רשא,חתנמה.)תינמרגותיתפרצ,תילגנא(תופשרפסמינפלעךרעומו,הזתהתרגסמבעצומןיטולחל
לשתורדסינפ-לעםילגעמירסחםינווכמםיפרג:רתויבםיללכםייפרגםינבמדומלללגוסמ,APUTומש
.םילמלשתופוצראלתורדסתוסכלםילוכירשא,תובכרומתודיחירובעםיימינפםיתמצםעםילמ
.םירחאםיגוצייםגו,ACCU-בםיגייותמרשאםינבמהתאהסכמםיפרגלשוזהתיללכההקלחמה
APUTוללהתוינבמהתונוכתבתכמותולשםירבעמהתכרעמרשא,םירבעמססובמחתנמכשמוממ.
.טלקהרובעםיגוצייבושיחלMTSLiBביכרתלעבםינוריונתשראוהAPUTלשםירבעמהגווסמ
םישומימלהאוושהבםגו,רתויםיטושפםינבמלהרמהלעתוססובמהתוטישתמועלתבחרנהאוושהב
ובשבצמבםג,ACCUינבמלטסקטרתויברקוידבחתנללגוסמAPUT-שאצמנ,גווסמהלשםירחא
שולשבתומגדומולאתואצות.הנושרוקממחקלנאוהרשאכםגוןומיאהףסואלהמודהקידבהףסוא
.תופש
יריבחתחותינלםגו,RMA-וMD,יטנמסחותינלתורחאתוטישיתשלםגתמגדומחתנמהלשותלוכי
דבלמתופסונתומישמםעדדומתהלותלוכיתאו,חתנמהלשותושימגתאםיגדמהזיוסינ.DUתטישב
ACCU.תאםינמאמרשאכ,ףסונבAPUTלעםירפתשמויעוציב,תחאהנועבותעבתומישמרפסמלע
ACCU.ןהלתובושחותומישמהלכלתועגונהתוללכהלשהדימלתועצמאבהשענהזרופיש.
לדבהלשםינושםינפםילגמונא,םייריבחתוםייטנמסםיגוצייבןכותהלשתיריפמאהאוושהב,ףוסבל
לשתוישומישהלעו,יטנמסחותינלריבחתלשהמורתלעגונבהברתועמשמשיולאםילדבהל.םהיניב
.תיעבטהפשדוביעבתויטנמסתומישמלתוטישהמתחאלכ
םידקמתמםינושםיגוציידועב.תישונאהפשדומללםיבשחמרובעיעצמאיטנמסחותינבהאורינא
לשםימושייבךומתל,תפתושמהרטמםיקלוחםה,םינושםיילמרופםינבמתועצמאבתונושתונחבאב
רוצייו,תונקסמתקסה,תוינשלבתונוכתיפלגוית,תוירוגטקלטסקטגוויסלשמלומכ,תיעבטהפשדוביע
םהםיגוצייהלכבםיגיותמהעדימהירגאמ.)הנוכמםוגרתבומכ(םימייוסמםיצוליאיפלשדחטסקט
.תיעבטהפשלשהנבהודוביעברכינרופישתגשהלובשמתשהלןתינרשא,ךרע-רקיבאשמ

130

לשםתכרדהבהתשענוזהדובע
דנבאירמער"דוטרופופרירא'פורפ

םינוריונתותשרתועצמאבילסרבינואיטנמסחותינ

היפוסוליפלרוטקודראותתלבקםשלרוביח

תאמ
ץיבוקשרהלאינד

םילשוריבתירבעההטיסרבינואהטנסלשגוה
9102ראורבפ

םינוריונתותשרתועצמאבילסרבינואיטנמסחותינ

היפוסוליפלרוטקודראותתלבקםשלרוביח

תאמ
ץיבוקשרהלאינד

םילשוריבתירבעההטיסרבינואהטנסלשגוה
9102ראורבפ

	Introduction
	Semantic Representations
	Universal Conceptual Cognitive Annotation
	UCCA Parsing

	Methodology
	Transition-Based Parsing
	Neural Networks
	Multitask Learning
	Evaluation

	A Transition-Based Directed Acyclic Graph Parser for UCCA (Published in ACL 2017)
	Introduction
	The UCCA Scheme
	Transition-based UCCA Parsing
	Experimental Setup
	Results
	Related Work
	Conclusion

	Multitask Parsing Across Semantic Representations (Published in ACL 2018)
	Introduction
	Related Work
	Tackled Parsing Tasks
	General Transition-based DAG Parser
	TUPA's Transition Set
	Transition Classifier

	Unified DAG Format
	Multitask Transition-based Parsing
	Experimental Setup
	Results
	Discussion
	Conclusion

	Universal Dependency Parsing with a General Transition-Based DAG Parser (Published in CoNLL 2018 Shared Task)
	Introduction
	Unified DAG Format
	General Transition-based DAG Parser
	Transition Set
	Transition Classifier
	Constraints

	Training details
	Hyperparameters
	Small Treebanks
	Multilingual Model
	Out-of-domain Evaluation

	Results
	Evaluation on Enhanced Dependencies
	Ablation Experiments

	Conclusion

	Content Differences in Syntactic and Semantic Representations (Published in NAACL-HLT 2019)
	Introduction
	Representations
	Shared Gold-standard Corpus
	Comparison Methodology
	Basic Conversion
	Extensions to the Converter

	Analysis of Divergences
	Confusion Matrix
	Scenes vs. Non-Scenes
	Primary and Secondary Relations
	Multi-Word Expressions
	Linkage
	Other Differences

	Fine-Grained UCCA Parsing Evaluation
	Experimental Setup
	Results

	Discussion
	Related Work
	Conclusion

	Discussion
	Objectives
	Challenges
	Further Analysis
	Benefit of Multitask Learning

	Ongoing Work
	Combining Syntax with Lexical Semantics
	Broad-coverage Semantic Parsing
	Establishing the Meaning Representation Parsing Task

	Conclusion

	A Transition-Based Directed Acyclic Graph Parser for UCCA Supplementary Notes
	Feature Templates
	Extended Presentation of UCCA
	Hyperparameter Values
	Bilexical Graph Conversion
	Proof Sketch for Completeness of the TUPA Transition Set

	Multitask Parsing Across Semantic Representations Supplementary Notes
	Features
	Conversion to and from Unified DAG Format
	Qualitative evaluation

	Content Differences in Syntactic and Semantic Representation Supplementary Material
	UCCA Category Definitions
	Universal Dependencies Category Definitions

