
A Transition-Based Directed Acyclic Graph Parser
for Universal Conceptual Cognitive Annotation

Daniel Hershcovich, Omri Abend and Ari Rappoport

Technion
June 29, 2017

Linguistic Annotation Schemes

• Dependency grammar (Tesniére, 1959; Nivre, 2005):

Purely syntactic analysis.

Semantic representation (Abend and Rappoport, 2017):

• Semantic dependencies (Oepen et al., 2015):

Coupled with syntactic representation.

• AMR (Banarescu et al., 2013), UCCA (Abend and Rappoport, 2013):

. . . showered = . . . took a shower

. . . ’s war against crime = . . . fights crime

Dependency Parsing

• Graph representation of syntactic structure.
• Bilexical tree: edges are only between tokens.
• Fast and accurate parsers (e.g. transition-based).

After graduation , Joe moved to Paris

root

case

nmod

punct

nsubj case

nmod

Non-projectivity (discontinuity) is a challenge (Nivre, 2009).

A hearing is scheduled on the issue today

root

det

nsubj:pass

aux:pass

case

det

nmod

nmod:tmod

Dependency Parsing

• Graph representation of syntactic structure.
• Bilexical tree: edges are only between tokens.
• Fast and accurate parsers (e.g. transition-based).

After graduation , Joe moved to Paris

root

case

nmod

punct

nsubj case

nmod

Non-projectivity (discontinuity) is a challenge (Nivre, 2009).

A hearing is scheduled on the issue today

root

det

nsubj:pass

aux:pass

case

det

nmod

nmod:tmod

Semantic Dependency Parsing
• Representation of predicate-argument relationships.
• Bilexical graph: allows reentrancy (and discontinuity).
• Various formalisms.

After graduation , Joe moved to Paris

top

ARG2

ARG1

ARG1 ARG1 ARG2

DELPH-IN MRS-derived bi-lexical dependencies (DM).

After graduation , Joe moved to Paris

top
TWHEN

ACT-arg

DIR3-arg

Prague Dependency Treebank tectogrammatical layer (PSD).

Semantic Dependency Parsing
• Representation of predicate-argument relationships.
• Bilexical graph: allows reentrancy (and discontinuity).
• Various formalisms.

After graduation , Joe moved to Paris

top

ARG2

ARG1

ARG1 ARG1 ARG2

DELPH-IN MRS-derived bi-lexical dependencies (DM).

After graduation , Joe moved to Paris

top
TWHEN

ACT-arg

DIR3-arg

Prague Dependency Treebank tectogrammatical layer (PSD).

Universal Conceptual Cognitive Annotation (UCCA)

After

L

graduation

P

H

,

U

Joe

A

moved

P

to

R

Paris

C

A

H

A

—– primary edge

- - - remote edge

After graduation, Joe moved to Paris
P process S state A participant
L linker H linked scene C center
E elaborator D adverbial R relator
N connector U punctuation F function
G ground

The UCCA Semantic Representation Scheme
Cross-linguistically applicable (Abend and Rappoport, 2013).
Stable in translation (Sulem et al., 2015).

UCCAApp
Rapid and intuitive annotation interface (Abend et al., 2017).
Usable by non-experts. http://ucca-demo.cs.huji.ac.il

http://ucca-demo.cs.huji.ac.il

HUME
UCCA facilitates semantics-based human evaluation of machine
translation (Birch et al., 2016). http://ucca.cs.huji.ac.il/mteval

http://ucca.cs.huji.ac.il/mteval

Graph Structure
UCCA forms a directed acyclic graph (DAG). Tokens are terminals.
Structural properties:

1. Non-terminal nodes

2. Reentrancy
3. Discontinuity

You

A

want
P

to

F

take

C

a
F

long bath

C

P

A

A

D

—– primary edge
- - - remote edge

You want to take a long bath

Graph Structure
UCCA forms a directed acyclic graph (DAG). Tokens are terminals.
Structural properties:

1. Non-terminal nodes
2. Reentrancy

3. Discontinuity

You

A

want
P

to

F

take

C

a
F

long bath

C

P

A

A

D

—– primary edge
- - - remote edge

You want to take a long bath

Graph Structure
UCCA forms a directed acyclic graph (DAG). Tokens are terminals.
Structural properties:

1. Non-terminal nodes
2. Reentrancy
3. Discontinuity

You

A

want
P

to

F

take

C

a
F

long bath

C

P

A

A

D

—– primary edge
- - - remote edge

You want to take a long bath

Transition-Based Parsing

• Parse text w1 . . . wn to graph G = (V , E , `) incrementally.
• Classifier determines transition to apply at each step.
• Trained by an oracle based on gold-standard graph.

Initial state:

stack buffer

You want to take a long bath

TUPA transitions:

{Shift, Reduce, NodeX , Left-EdgeX , Right-EdgeX ,
Left-RemoteX , Right-RemoteX , Swap, Finish}

Support non-terminal nodes, reentrancy and discontinuity.

Transition-Based Parsing

• Parse text w1 . . . wn to graph G = (V , E , `) incrementally.
• Classifier determines transition to apply at each step.
• Trained by an oracle based on gold-standard graph.

Initial state:

stack buffer

You want to take a long bath

TUPA transitions:

{Shift, Reduce, NodeX , Left-EdgeX , Right-EdgeX ,
Left-RemoteX , Right-RemoteX , Swap, Finish}

Support non-terminal nodes, reentrancy and discontinuity.

Transition-Based Parsing

• Parse text w1 . . . wn to graph G = (V , E , `) incrementally.
• Classifier determines transition to apply at each step.
• Trained by an oracle based on gold-standard graph.

Initial state:

stack buffer

You want to take a long bath

TUPA transitions:

{Shift, Reduce, NodeX , Left-EdgeX , Right-EdgeX ,
Left-RemoteX , Right-RemoteX , Swap, Finish}

Support non-terminal nodes, reentrancy and discontinuity.

Transition-Based UCCA Parsing
⇒ Shift

stack

You

buffer

want to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Right-EdgeA

stack

You

buffer

want to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You want

buffer

to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Swap

stack

want

buffer

You to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Right-EdgeP

stack

want

buffer

You to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Reduce

stack buffer

to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You

buffer

to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You to

buffer

take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ NodeF

stack

You to

buffer

take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Reduce

stack

You

buffer

take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You

buffer

take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You take

buffer

a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ NodeC

stack

You take

buffer

a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Reduce

stack

You

buffer

a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You

buffer

a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Right-EdgeP

stack

You

buffer

a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You a

buffer

long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Right-EdgeF

stack

You a

buffer

long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Reduce

stack

You

buffer

long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You long

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Swap

stack

You long

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Right-EdgeD

stack

You long

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Reduce

stack

You

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Swap

stack buffer

You bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Right-EdgeA

stack buffer

You bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Reduce

stack buffer

You bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Reduce

stack buffer

You bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Left-RemoteA

stack

You

buffer

bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Shift

stack

You bath

buffer

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Right-EdgeC

stack

You bath

buffer

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Transition-Based UCCA Parsing
⇒ Finish

stack

You bath

buffer

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D

Word Embeddings
Represent discrete features by dense vectors (Goldberg, 2016).

Feed-Forward Neural Network (MLP)
Learns representation and classification by optimizing weights.

x1 x2 x3 x4Input layer

∫ ∫ ∫ ∫ ∫ ∫
Hidden layer

∫ ∫ ∫ ∫ ∫
Hidden layer

y1 y2 y3Output layer

Recurrent Neural Network (RNN)
Applied to sequences, updates state given input and previous state.

Long Short-Term Memory (LSTM)
Memory cell to avoid vanishing gradients in RNNs.

ct

Cell

× ht×

×

ft Forget Gate

itInput Gate otOutput Gate

xt

xt xt

xt

TUPA Model
Greedy parsing, experimenting with three classifiers:

Sparse Perceptron with sparse features.
MLP Embeddings + feedforward NN classifier.
BiLSTM Embeddings + deep bidirectional LSTM + MLP.

Features: words, POS, syntactic dependencies, existing edge labels
from the stack and buffer + parents, children, grandchildren;
ordinal features (height, number of parents and children)

BiLSTM

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

BiLSTM

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

BiLSTM

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

BiLSTM

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

stack You take

buffer a long bath

graph

You
A

want
P

to
F

take
C

a
F

long bath
C

You

LSTM

LSTM

LSTM

LSTM

want

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

take

LSTM

LSTM

LSTM

LSTM

a

LSTM

LSTM

LSTM

LSTM

long

LSTM

LSTM

LSTM

LSTM

bath

LSTM

LSTM

LSTM

LSTM

MLP

NodeC

Experimental Setup

• UCCA Wikipedia corpus (
train
4268 +

dev
454 +

test
503 sentences).

• Out-of-domain: English part of English-French parallel corpus,
Twenty Thousand Leagues Under the Sea (506 sentences).

Evaluation
Comparing graphs over the same sequence of tokens,

• Match edges by their terminal yield and label.
• Calculate labeled precision, recall and F1 scores.
• Separate primary and remote edges.

gold

After

L

graduation

P

H
,

U

Joe

A

moved

P

to

R

Paris

C

A

H

A

predicted

After

L

graduation

S

H
,

U

Joe

A

moved

P

to

F

Paris

A

H

A

A

Primary: LP LR LF
6
9 = 67% 6

10 = 60% 64% Remote: LP LR LF
1
2 = 50% 1

1 = 100% 67%

Results

Primary Remote
LP LR LF LP LR LF

Sparse 64.5 63.7 64.1 19.8 13.4 16
MLP 65.2 64.6 64.9 23.7 13.2 16.9
BiLSTM 74.4 72.7 73.5 47.4 51.6 49.4

Results on the Wiki test set.

Primary Remote
LP LR LF LP LR LF

Sparse 59.6 59.9 59.8 22.2 7.7 11.5
MLP 62.3 62.6 62.5 20.9 6.3 9.7
BiLSTM 68.7 68.5 68.6 38.6 18.8 25.3

Results on the 20K Leagues out-of-domain set.

Results

Primary Remote
LP LR LF LP LR LF

Sparse 64.5 63.7 64.1 19.8 13.4 16
MLP 65.2 64.6 64.9 23.7 13.2 16.9
BiLSTM 74.4 72.7 73.5 47.4 51.6 49.4

Results on the Wiki test set.

Primary Remote
LP LR LF LP LR LF

Sparse 59.6 59.9 59.8 22.2 7.7 11.5
MLP 62.3 62.6 62.5 20.9 6.3 9.7
BiLSTM 68.7 68.5 68.6 38.6 18.8 25.3

Results on the 20K Leagues out-of-domain set.

Bilexical Graph Approximation
No existing UCCA parsers ⇒ compare to bilexical parsers:

1. Convert UCCA to bilexical dependencies.
2. Train bilexical parsers and apply to test sentences.
3. Reconstruct UCCA graphs and compare with gold standard.

After graduation , Joe moved to Paris

L U

A

A

H

R

A

Bilexical DAG approximation.

Baselines
Bilexical DAG parsers:

• DAGParser (Ribeyre et al., 2014): transition-based.
• TurboParser (Almeida and Martins, 2015): graph-based.

Tree parsers (all transition-based):
• MaltParser (Nivre et al., 2007): bilexical tree parser.
• LSTM Parser (Dyer et al., 2015): bilexical tree parser.
• uparse (Maier, 2015): allows non-terminals, discontinuity.

After graduation , Joe moved to Paris

L U A

H

R

A

Bilexical tree approximation.

Conversion to trees is just removing remote edges.

Results
TUPABiLSTM obtains the highest F-scores in all metrics:

Primary Remote
LP LR LF LP LR LF

TUPASparse 64.5 63.7 64.1 19.8 13.4 16
TUPAMLP 65.2 64.6 64.9 23.7 13.2 16.9
TUPABiLSTM 74.4 72.7 73.5 47.4 51.6 49.4
Bilexical DAG (91) (58.3)
DAGParser 61.8 55.8 58.6 9.5 0.5 1
TurboParser 57.7 46 51.2 77.8 1.8 3.7
Bilexical tree (91) –
MaltParser 62.8 57.7 60.2 – – –
LSTM Parser 73.2 66.9 69.9 – – –
Tree (100) –
uparse 60.9 61.2 61.1 – – –

Results on the Wiki test set.

Results
Similar on out-of-domain test set:

Primary Remote
LP LR LF LP LR LF

TUPASparse 59.6 59.9 59.8 22.2 7.7 11.5
TUPAMLP 62.3 62.6 62.5 20.9 6.3 9.7
TUPABiLSTM 68.7 68.5 68.6 38.6 18.8 25.3
Bilexical DAG (91.3) (43.4)
DAGParser 56.4 50.6 53.4 – 0 0
TurboParser 50.3 37.7 43.1 100 0.4 0.8
Bilexical tree (91.3) –
MaltParser 57.8 53 55.3 – – –
LSTM Parser 66.1 61.1 63.5 – – –
Tree (100) –
uparse 52.7 52.8 52.8 – – –

Results on the 20K Leagues out-of-domain set.

Conclusion

• UCCA’s semantic distinctions require a graph structure
including challenging structural properties.

• TUPA is a transition-based parser suitable for UCCA,
achieving high accuracy with BiLSTM model.

• Outperforms conversion-based parsing with a variety of strong
bilexical DAG and tree baselines.

Corpora: http://www.cs.huji.ac.il/˜oabend/ucca.html
Code: https://github.com/danielhers/tupa
Demo: https://rebrand.ly/tupa

http://www.cs.huji.ac.il/~oabend/ucca.html
https://github.com/danielhers/tupa
https://rebrand.ly/tupa

Future Work

• Beam search, training with exploration.
• More languages (German corpus construction is underway).
• Parsing other schemes, such as AMR.
• Different target representations for conversion.
• Application to text simplification and other tasks.

Thank you

References I
Abend, O. and Rappoport, A. (2013).

Universal Conceptual Cognitive Annotation (UCCA).
In Proc. of ACL, pages 228–238.

Abend, O. and Rappoport, A. (2017).
The state of the art in semantic representation.
In Proc. of ACL.
to appear.

Abend, O., Yerushalmi, S., and Rappoport, A. (2017).
UCCAApp: Web-application for syntactic and semantic phrase-based annotation.
In Proc. of ACL: System Demonstration Papers.
to appear.

Almeida, M. S. C. and Martins, A. F. T. (2015).
Lisbon: Evaluating TurboSemanticParser on multiple languages and out-of-domain data.
In Proc. of SemEval, pages 970–973.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Palmer, M., and
Schneider, N. (2013).
Abstract Meaning Representation for sembanking.
In Proc. of the Linguistic Annotation Workshop.

Birch, A., Abend, O., Bojar, O., and Haddow, B. (2016).
HUME: Human UCCA-based evaluation of machine translation.
In Proc. of EMNLP, pages 1264–1274.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015).
Transition-based dependeny parsing with stack long short-term memory.
In Proc. of ACL, pages 334–343.

References II
Goldberg, Y. (2016).

A primer on neural network models for natural language processing.

Maier, W. (2015).
Discontinuous incremental shift-reduce parsing.
In Proc. of ACL, pages 1202–1212.

Nivre, J. (2005).
Dependency grammar and dependency parsing.

Nivre, J. (2009).
Non-projective dependency parsing in expected linear time.
In Proc. of ACL, pages 351–359.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., and Marsi, E. (2007).
MaltParser: A language-independent system for data-driven dependency parsing.
Natural Language Engineering, 13(02):95–135.

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D., Cinková, S., Flickinger, D., Hajič, J., and Urešová, Z. (2015).
SemEval 2015 task 18: Broad-coverage semantic dependency parsing.
In Proc. of SemEval, pages 915–926.

Ribeyre, C., Villemonte de la Clergerie, E., and Seddah, D. (2014).
Alpage: Transition-based semantic graph parsing with syntactic features.
In Proc. of SemEval, pages 97–103.

Sulem, E., Abend, O., and Rappoport, A. (2015).
Conceptual annotations preserve structure across translations: A French-English case study.
In Proc. of S2MT, pages 11–22.

Tesniére, L. (1959).
Elements de syntaxe structuralle.
Klincksieck, Paris, 2 edition.

UCCA Corpora
Wiki 20K

Train Dev Test Leagues
passages 300 34 33 154
sentences 4268 454 503 506
nodes 298,993 33,704 35,718 29,315
% terminal 42.96 43.54 42.87 42.09
% non-term. 58.33 57.60 58.35 60.01
% discont. 0.54 0.53 0.44 0.81
% reentrant 2.38 1.88 2.15 2.03
edges 287,914 32,460 34,336 27,749
% primary 98.25 98.75 98.74 97.73
% remote 1.75 1.25 1.26 2.27
Average per non-terminal node
children 1.67 1.68 1.66 1.61

Corpus statistics.

Evaluation
Mutual edges between predicted graph Gp = (Vp, Ep, `p) and gold
graph Gg = (Vg , Eg , `g), both over terminals W = {w1, . . . , wn}:

M(Gp, Gg) =
{

(e1, e2) ∈ Ep×Eg
∣∣∣ y(e1) = y(e2)∧`p(e1) = `g(e2)

}
The yield y(e) ⊆ W of an edge e = (u, v) in either graph is the set
of terminals in W that are descendants of v . ` is the edge label.

Labeled precision, recall and F-score are then defined as:

LP = |M(Gp, Gg)|
|Ep|

, LR = |M(Gp, Gg)|
|Eg |

,

LF = 2 · LP · LR
LP + LR .

Two variants: one for primary edges, and another for remote edges.

	Introduction
	Universal Conceptual Cognitive Annotation
	Transition-based UCCA Parsing
	Deep Learning for NLP
	Experiments
	Conclusion
	Backup

