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Linguistic Annotation Schemes

e Dependency grammar (Tesniére, 1959; Nivre, 2005):
Purely syntactic analysis.
Semantic representation (Abend and Rappoport, 2017):

e Semantic dependencies (Oepen et al., 2015):

Coupled with syntactic representation.

e AMR (Banarescu et al., 2013), UCCA (Abend and Rappoport, 2013):

’ e showered‘ = ‘ ...took a shower‘

’ ...’s war against crime‘ = ‘ ... fights crime‘




Dependency Parsing

e Graph representation of syntactic structure.
o Bilexical tree: edges are only between tokens.

e Fast and accurate parsers (e.g. transition-based).

After graduation , Joe moved to Paris
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e Graph representation of syntactic structure.
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Non-projectivity (discontinuity) is a challenge (Nivre, 2009).
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A hearing is  scheduled on the issue today




Semantic Dependency Parsing

o Representation of predicate-argument relationships.
e Bilexical graph: allows reentrancy (and discontinuity).
e Various formalisms.

(ARGL)
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[{ARGI}\ ARGl}\ /{ARGZ}\l
After graduation , Joe moved to Paris

DELPH-IN MRS-derived bi-lexical dependencies (DM).



Semantic Dependency Parsing

o Representation of predicate-argument relationships.
e Bilexical graph: allows reentrancy (and discontinuity).
e Various formalisms.

(ARGL)
top
ARG2 [—[ARGI}\ ARGl}\ /{ARGQ}\l
After graduation , Joe moved to Paris

DELPH-IN MRS-derived bi-lexical dependencies (DM).
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After graduation , moved to Paris

Prague Dependency Treebank tectogrammatical layer (PSD).



Universal Conceptual Cognitive Annotation (UCCA)
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The UCCA Semantic Representation Scheme

Cross-linguistically applicable (Abend and Rappoport, 2013).
Stable in translation (Sulem et al., 2015).
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IBM happened to choose a company with a crucial vulnerability , despite vetting .

/ng/y//z/%\

IBM chose in-mistake with-company very vulnerable despite that-checked it beforehand
n'a MNa myv-a m1an-2 XN ywa . mnd nPTI-Y MR wRIN

IBM baxra  bs-ta'ut ba-xevra ma’od pgi'a lamrot $o-badka ota meros




UCCAApp

Rapid and intuitive annotation interface (Abend et al., 2017).
Usable by non-experts. http://ucca-demo.cs.huji.ac.il
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|william Bradley Pitt was born in Shawnee , Oklahoma| , to William Alvin Pitt , who ran a trucking company , and Jane Etta ( née Hillhouse ), a

school counsellor . The family soon moved to Springfield , Missouri , where he lived together with his younger siblings , Douglas ( born 1966 ) and

Julie Neal ( born 1969 ). Born into a conservative household , he was raised as Southern Baptist , but has since stated tiat he does not " have a

great relationship with religion * and that he * oscillates between agnosticism and atheism ." Pitt has described Springfield as * Mark Twain country

, Jesse James country ", having grown up with " a lot of hills , a lot of lakes "
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http://ucca-demo.cs.huji.ac.il

HUME

UCCA facilitates semantics-based human evaluation of machine
translation (Birch et al., 2016). http://ucca.cs.huji.ac.il/mteval
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http://ucca.cs.huji.ac.il/mteval

Graph Structure

UCCA forms a directed acyclic graph (DAG). Tokens are terminals.
Structural properties:

1. Non-terminal nodes

—— primary edge
P
- - - remote edge

take a long bath

You want to take a long bath
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Graph Structure

UCCA forms a directed acyclic graph (DAG). Tokens are terminals.
Structural properties:

1. Non-terminal nodes
2.

3. Discontinuity

—— primary edge
P
- - - remote edge

take a long bath

You want to take a long bath



Transition-Based Parsing

e Parse text wy ... w, to graph G = (V, E, ¢) incrementally.
o Classifier determines transition to apply at each step.

e Trained by an oracle based on gold-standard graph.
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Transition-Based Parsing

e Parse text wy ... w, to graph G = (V, E, ¢) incrementally.
o Classifier determines transition to apply at each step.

e Trained by an oracle based on gold-standard graph.

Initial state:
stack buffer
@ ‘ You ‘ Want‘ to ‘ take ‘ a ‘ long‘ bath‘

TUPA transitions:

{SHIFT, REDUCE, NODEx, LEFT-EDGEX, RIGHT-EDGEY,
LEFT-REMOTEx, RIGHT-REMOTEYX, SWAP, FINISH}

Support non-terminal nodes, reentrancy and discontinuity.



Transition-Based UCCA Parsing

= SHIFT

stack buffer
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Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing

= SHIFT
stack buffer
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Transition-Based UCCA Parsing

= SWAP

stack buffer
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Transition-Based UCCA Parsing

= RIGHT-EDGEp

stack buffer
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Transition-Based UCCA Parsing

= REDUCE

stack buffer
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Transition-Based UCCA Parsing

= SHIFT
stack buffer
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Transition-Based UCCA Parsing

= SHIFT
stack buffer
‘ () ‘ You ‘ to ‘ ‘ take ‘ a ‘ long ‘ bath ‘
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Transition-Based UCCA Parsing

= NODEp

stack buffer
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Transition-Based UCCA Parsing

= REDUCE
stack buffer
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Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing

= NODE(C
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Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing

= RIGHT-EDGEp
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Transition-Based UCCA Parsing

= SHIFT

stack buffer
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Transition-Based UCCA Parsing

= RIGHT-EDGER
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Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing

= SwAP
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Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing

= SWAP
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Transition-Based UCCA Parsing

= RIGHT-EDGE/
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Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing

= SHIFT
stack buffer
You @ [bath |
graph
P A
You want
F P D
to
C F
take a long




Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing

= LEFT-REMOTEx

stack buffer




Transition-Based UCCA Parsing
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Transition-Based UCCA Parsing

= RIGHT-EDGEC
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Transition-Based UCCA Parsing

= FINISH
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Word Embeddings

Represent discrete features by dense vectors (Goldberg, 2016).

pw=the pt=DET w=dog&pw=the
t=NOUN \
w=dog P \ \ w=dog&pt=DET w=chair&pt=DET
| !
x=(0,..,010,..,0,1,0 ... 01,90..,0,1,0,,10,...,0,0,0,...,0)

X = (0.26, 0.25, -0.39, -0.07, 0.13, -0.17) /(-0.43, -0.37, -0.12, 0.13, -0.11, 0.34) (-0.04, 0.50, 0.04, 0.44)

RN

0.16, 0.03, -0.17, -0.13
chair| (-0.37,-0.23, 0.33, 0.38, -0.02, -0.37) NOUN | ( )
VERB  (0.41,0.08, 0.44, 0.02)
on | (-0.21,-0.11,-0.10, 0.07, 0.37, 0.15)
dog | (0.26, 0.25, -0.39, -0.07, 0.13, -0.17)

DET = (-0.04,0.50, 0.04, 0.44)
ADJ  (-0.01,-0.35,-0.27, 0.20)
the | (-0.43,-0.37,-0.12,0.13,-0.11, 0.34) PREP  (-0.26,0.28,-0.34, -0.02)

mouth | (0,32, 0.43,-0.14, 0.50, -0.13, -0.42)

ADV  (0.02,-0.17, 0.46, -0.08)
gone | (0.06, -0.21, -0.38, -0.28, -0.16, -0.44)

POS Embeddings
Word Embeddings



MLP)

Learns representation and classification by optimizing weights.

Feed-Forward Neural Network (

Output layer

Hidden layer

X2 X3

X1

Input layer



Recurrent Neural Network (RNN)

Applied to sequences, updates state given input and previous state.
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Long Short-Term Memory (LSTM)
Memory cell to avoid vanishing gradients in RNNs.

Xt Xt

Input Gate Output Gate

Cell

XtH Hht

Forget Gate

TN

Xt




TUPA Model

Greedy parsing, experimenting with three classifiers:

Sparse Perceptron with sparse features.
MLP Embeddings + feedforward NN classifier.
BiLSTM Embeddings + deep bidirectional LSTM + MLP.

Features: words, POS, syntactic dependencies, existing edge labels
from the stack and buffer + parents, children, grandchildren;
ordinal features (height, number of parents and children)



BiLSTM
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BiLSTM
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Experimental Setup

train

dev
e UCCA Wikipedia corpus (4268 + 4§4 + 503 sentences).

test

e Out-of-domain: English part of English-French parallel corpus,
Twenty Thousand Leagues Under the Sea (506 sentences).




Evaluation

Comparing graphs over the same sequence of tokens,
e Match edges by their terminal yield and label.
o Calculate labeled precision, recall and F1 scores.

e Separate primary and remote edges.

gold predicted

.
graduation
i
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Joe

briar. _ LP LR LF Remote: . LP LR LF
MY TE_671% & = 60% 64% T 1=50% 1=100% 67%




Results

Primary Remote
LP LR LF | LP LR LF

Sparse 645 63.7 64.1 | 198 134 16
MLP 65.2 646 649 | 237 132 16.9
BiLSTM | 74.4 727 73.5|474 516 49.4

Results on the Wiki test set.



Results

Primary Remote
LP LR LF | LP LR LF

Sparse 645 63.7 64.1 | 198 134 16
MLP 65.2 646 649 | 237 132 16.9
BiLSTM | 74.4 727 73.5|474 516 49.4

Results on the Wiki test set.

Primary Remote
LP LR LF LP LR LF

Sparse 59.6 599 598|222 7.7 115
MLP 62.3 626 625 | 209 6.3 9.7
BiLSTM | 68.7 685 68.6 | 38.6 18.8 25.3

Results on the 20K Leagues out-of-domain set.



Bilexical Graph Approximation

No existing UCCA parsers = compare to bilexical parsers:
1. Convert UCCA to bilexical dependencies.
2. Train bilexical parsers and apply to test sentences.

3. Reconstruct UCCA graphs and compare with gold standard.

el

After graduation moved to Paris

Bilexical DAG approximation.



Baselines

Bilexical DAG parsers:

e DAGParser (Ribeyre et al., 2014): transition-based.

e TurboParser (Almeida and Martins, 2015): graph-based.
Tree parsers (all transition-based):

e MaltParser (Nivre et al., 2007): bilexical tree parser.

e LSTM Parser (Dyer et al., 2015): bilexical tree parser.

e UPARSE (Maier, 2015): allows non-terminals, discontinuity.

o [ m\m

After graduation moved to Paris

Bilexical tree approximation.

Conversion to trees is just removing remote edges.



Results

TUPARg;LsTMm obtains the highest F-scores in all metrics:

Primary Remote

LP LR LF LP LR LF
TUPAsparse 645 63.7 641 | 198 134 16
TUPAMLP 65.2 646 649 |23.7 132 169
TUPAgiLtstm | 744 727 735 | 474 516 494
Bilexical DAG (91) (58.3)
DAGParser 61.8 558 586 | 95 0.5 1
TurboParser | 57.7 46 51.2 | 77.8 1.8 3.7
Bilexical tree (91) -
MaltParser 62.8 b57.7 60.2 - — -
LSTM Parser | 73.2 66.9 69.9 - - -
Tree (100) -
UPARSE 60.9 61.2 61.1 - - -

Results on the Wiki test set.



Results

Similar on out-of-domain test set:

Primary Remote

LP LR LF LP LR LF
TUPAsparse 59.6 599 598 | 222 77 115
TUPAMLP 62.3 626 625 | 209 6.3 9.7
TUPAg) stm | 68.7 685 68.6 | 38.6 18.8 25.3
Bilexical DAG (91.3) (43.4)
DAGParser 56.4 50.6 534 - 0 0
TurboParser | 50.3 37.7 43.1 | 100 04 0.8
Bilexical tree (91.3) -
MaltParser 57.8 53 55.3 - - —
LSTM Parser | 66.1 61.1 63.5 - - -
Tree (100) -
UPARSE 52.7 52.8 52.8 - - -

Results on the 20K Leagues out-of-domain set.



Conclusion

e UCCA's semantic distinctions require a graph structure
including challenging structural properties.

e TUPA is a transition-based parser suitable for UCCA,
achieving high accuracy with BiLSTM model.

e Outperforms conversion-based parsing with a variety of strong
bilexical DAG and tree baselines.

Corpora: http://www.cs.huji.ac.il/~oabend/ucca.html
Code: https://github.com/danielhers/tupa
Demo: https://rebrand.ly/tupa


http://www.cs.huji.ac.il/~oabend/ucca.html
https://github.com/danielhers/tupa
https://rebrand.ly/tupa

Future Work

e Beam search, training with exploration.

More languages (German corpus construction is underway).

Parsing other schemes, such as AMR.

Different target representations for conversion.

Application to text simplification and other tasks.



Thank you
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UCCA Corpora

Wiki 20K
Train Dev Test Leagues
# passages 300 34 33 154
# sentences 4268 454 503 506
# nodes 298,993 33,704 35,718 | 29,315
% terminal 42.96 43.54  42.87 42.09
% non-term. 58.33 57.60 58.35 60.01
% discont. 0.54 0.53 0.44 0.81
% reentrant | 2.38 1.88 2.15 2.03
# edges 287,914 32,460 34,336 | 27,749
% primary 08.25 08.75  98.74 97.73
% remote 1.75 1.25 1.26 2.27
Average per non-terminal node
# children 1.67 1.68 1.66 1.61

Corpus statistics.



Evaluation

Mutual edges between predicted graph G, = (Vp, Ep, £,) and gold
graph Gg = (Vg, Eg,{g), both over terminals W = {w,..., w,}:

M(Gp. Gg) = {(e1,e2) € EpxEg | y(er) = y(e2)Alpler) = lg(e2) |

The yield y(e) C W of an edge e = (u, v) in either graph is the set
of terminals in W that are descendants of v. /7 is the edge label.

Labeled precision, recall and F-score are then defined as:

L Mo Gl MGy Gp)l
|Epl | Eg|
2.LP-LR
F=Tri R

Two variants: one for primary edges, and another for remote edges.
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