A Transition-Based Directed Acyclic Graph Parser for Universal Conceptual Cognitive Annotation

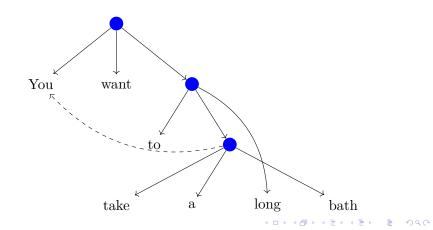
Daniel Hershcovich, Omri Abend and Ari Rappoport

Tel Aviv University January 9, 2018

TUPA — Transition-based UCCA Parser

The **first parser** to support the combination of three properties:

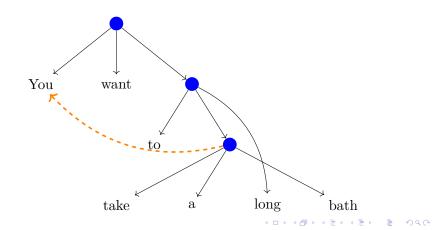
1. Non-terminal nodes — entities and events over the text



TUPA — Transition-based UCCA Parser

The first parser to support the combination of three properties:

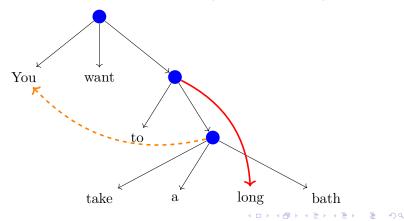
- 1. Non-terminal nodes entities and events over the text
- 2. Reentrancy allow argument sharing



TUPA — Transition-based UCCA Parser

The first parser to support the combination of three properties:

- 1. Non-terminal nodes entities and events over the text
- 2. Reentrancy allow argument sharing
- 3. Discontinuity conceptual units are split
- needed for many semantic schemes (e.g. AMR, UCCA).



Introduction

Linguistic Structure Annotation Schemes

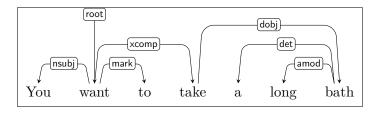
- Syntactic dependencies
- Semantic dependencies (Oepen et al., 2016)
- AMR (Banarescu et al., 2013)
- UCCA (Abend and Rappoport, 2013)
- Other semantic representation schemes¹

Abstract away from syntactic detail that does not affect meaning:

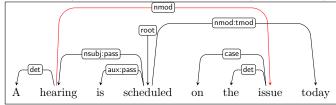
$$\dots$$
 bathed = \dots took a bath

Syntactic Dependencies

- Bilexical tree: syntactic structure representation.
- Fast and accurate parsers (e.g. *transition-based*).



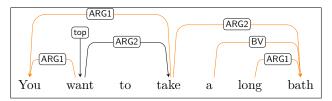
Non-projectivity (discontinuity) is a challenge (Nivre, 2009).



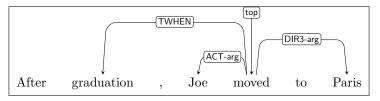
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Semantic Dependencies

- Bilexical graph: predicate-argument representation.
- Derived from theories of syntax-semantics interface.



DELPH-IN MRS-derived bi-lexical dependencies (DM).



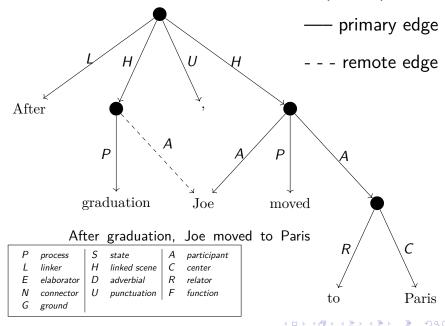
Prague Dependency Treebank tectogrammatical layer (PSD).

・ロト・日本・日本・日本・日本・日本・日本

The UCCA Semantic Representation Scheme

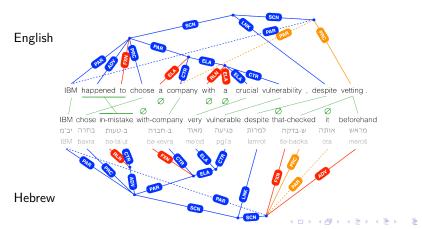
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Universal Conceptual Cognitive Annotation (UCCA)



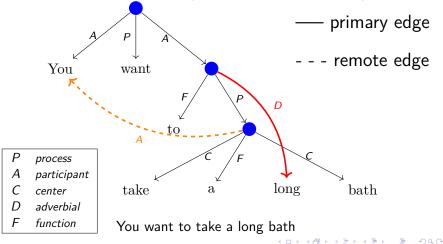
The UCCA Semantic Representation Scheme

- Cross-linguistically applicable (Abend and Rappoport, 2013).
- Stable in translation (Sulem et al., 2015).
- Fast and intuitive to annotate (Abend et al., 2017).
- Facilitates MT human evaluation (Birch et al., 2016).



Graph Structure

UCCA generates a directed acyclic graph (DAG). Text tokens are terminals, complex units are non-terminal nodes. *Remote edges* enable reentrancy for argument sharing. Phrases may be discontinuous (e.g., multi-word expressions).



Transition-based UCCA Parsing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Transition-Based Parsing

First used for dependency parsing (Nivre, 2004). Parse text $w_1 \dots w_n$ to graph *G* incrementally by applying transitions to the parser state: stack, buffer and constructed graph.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Transition-Based Parsing

First used for dependency parsing (Nivre, 2004). Parse text $w_1 \dots w_n$ to graph *G* incrementally by applying transitions to the parser state: stack, buffer and constructed graph.

Initial state:

stack							buffer	
	You	want	to	take	a	long	bath	

Transition-Based Parsing

First used for dependency parsing (Nivre, 2004). Parse text $w_1 \dots w_n$ to graph *G* incrementally by applying transitions to the parser state: stack, buffer and constructed graph.

Initial state:

stack							buffer
	You	want	to	take	a	long	bath

TUPA transitions: {SHIFT, REDUCE, NODE_X, LEFT-EDGE_X, RIGHT-EDGE_X, LEFT-REMOTE_X, RIGHT-REMOTE_X, SWAP, FINISH}

Support non-terminal nodes, reentrancy and discontinuity.

 \Rightarrow Shift

stack buffer You long want to take bath \mathbf{a} graph

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

$\Rightarrow \operatorname{Right-Edge}_{\mathcal{A}}$

stack buffer You take long bath want to \mathbf{a} graph A You

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

 \Rightarrow Shift

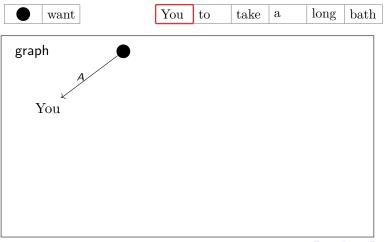
stack buffer You long want take bath to \mathbf{a} graph A You

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ 今々ぐ

 \Rightarrow Swap

stack

buffer



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

\Rightarrow Right-Edge_P

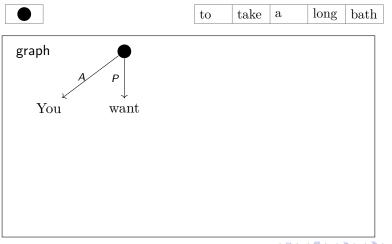
stack buffer long want You take bath to \mathbf{a} graph Р You want

・ロト・西ト・山田・山田・山口・

\Rightarrow Reduce

stack

buffer



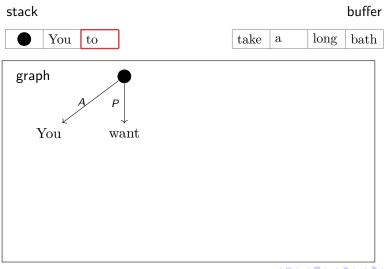
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

 \Rightarrow Shift

stack buffer You long take bath to \mathbf{a} graph Р You want

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

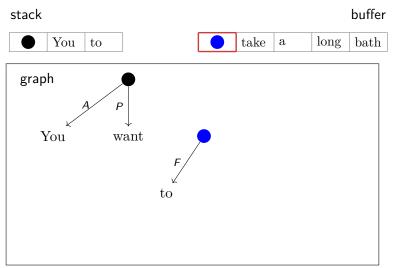
 \Rightarrow Shift



24

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

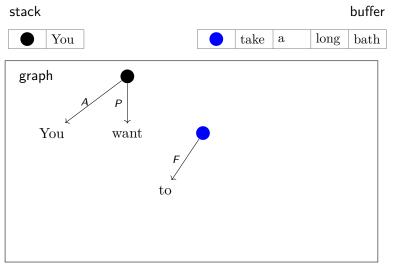
 $\Rightarrow \operatorname{NODE}_{\textit{F}}$



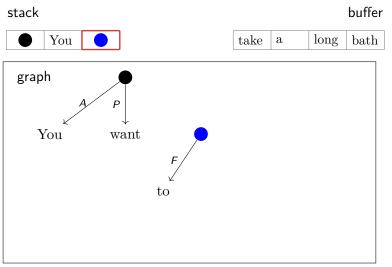
25

うせん 川田 ふぼや 小田 そうそう

\Rightarrow Reduce

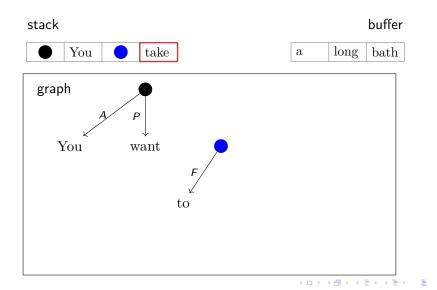


 \Rightarrow Shift



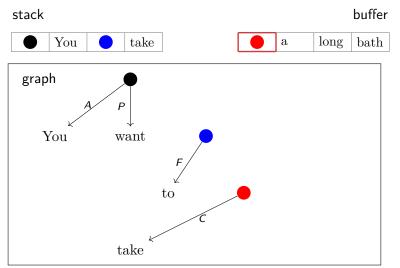
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

 \Rightarrow Shift

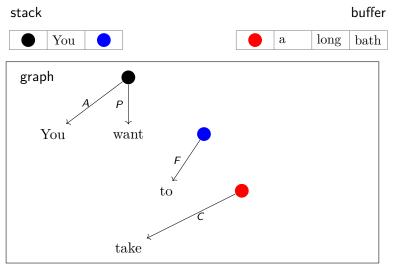


28

 $\Rightarrow \operatorname{NODE}_{\mathcal{C}}$



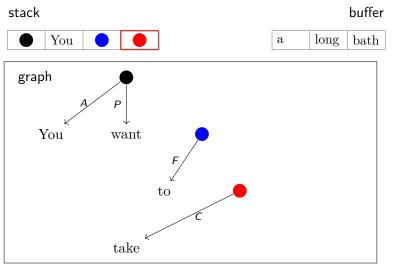
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶



30

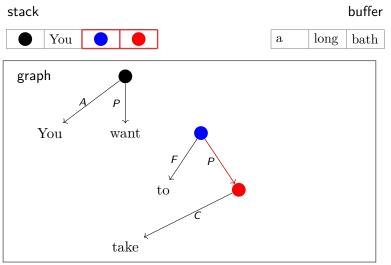
・ロト・西ト・山田・山田・山口・

 \Rightarrow Shift



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

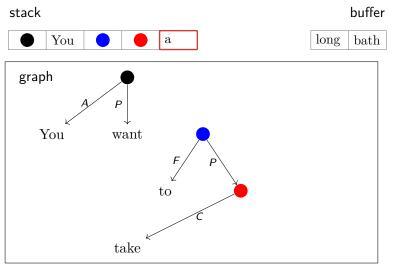
 \Rightarrow Right-Edge_P



32

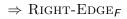
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

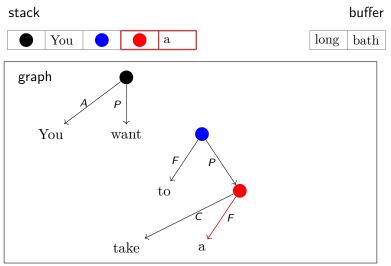
 \Rightarrow Shift



33

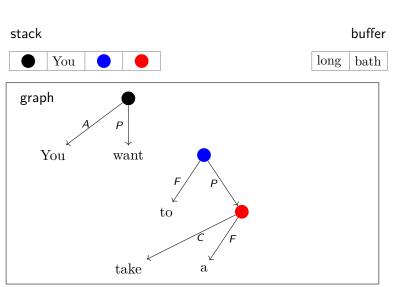
のとの 川 (山) (山) (山) (山) (山) (山)





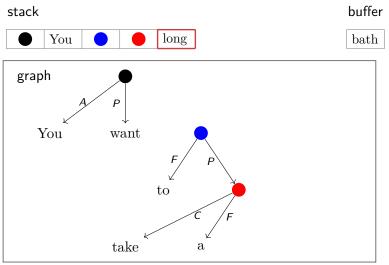
34

 \Rightarrow Reduce



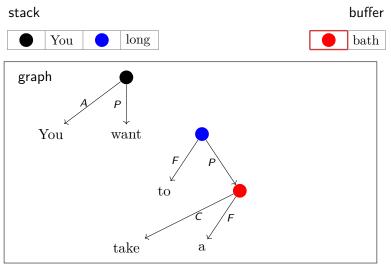
のとの 川 (山) (山) (山) (山) (山) (山)

 \Rightarrow Shift



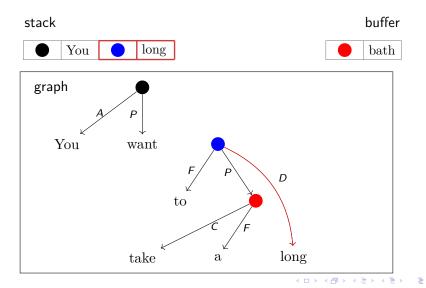
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 \Rightarrow Swap

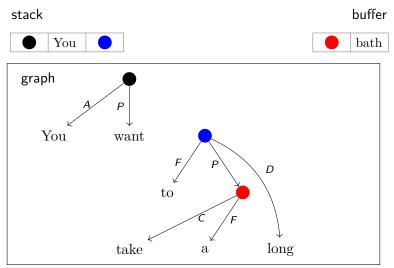


うせん 川田 ふぼや 小田 そうそう

 \Rightarrow Right-Edge_D



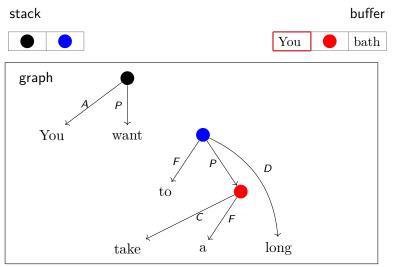
38



39

・ロト・西ト・山田・山田・山口・

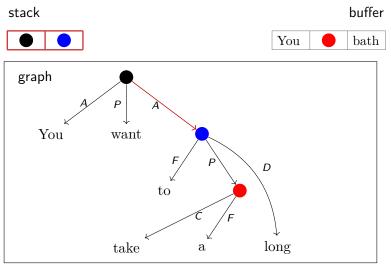
 \Rightarrow Swap

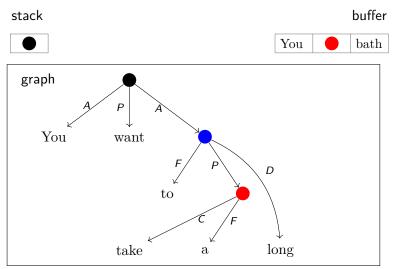


40

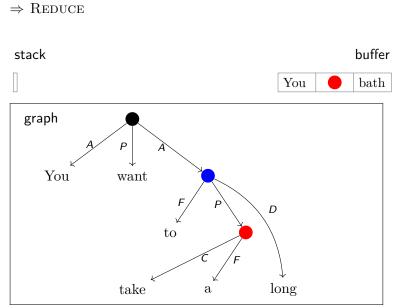
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\Rightarrow \operatorname{Right-Edge}_{\mathcal{A}}$





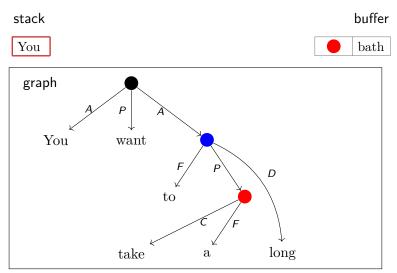
◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶



43

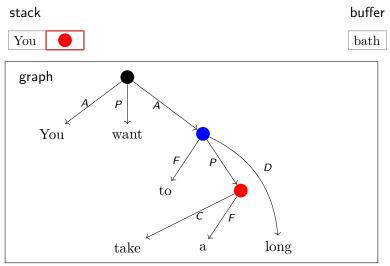
・ロト・西ト・山田・山田・山口・

 \Rightarrow Shift



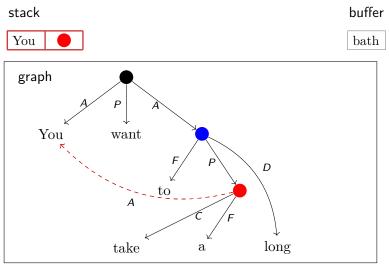
うせん 川田 ふぼや 小田 そうそう

 \Rightarrow Shift



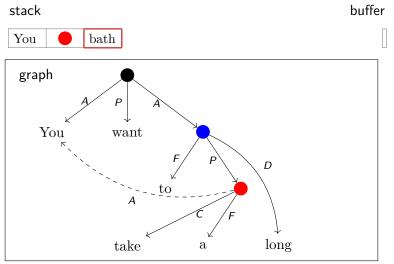
うせん 川田 ふぼや 小田 そうそう

$\Rightarrow \text{Left-Remote}_{\mathcal{A}}$

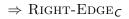


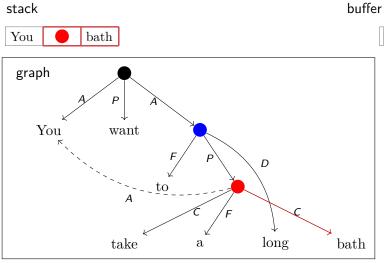
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

 \Rightarrow Shift



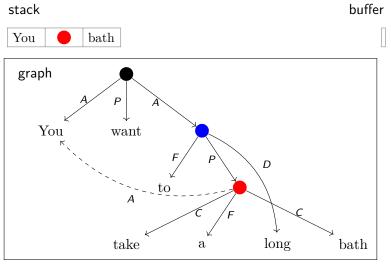
◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶





・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

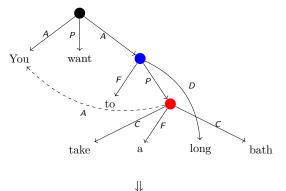
 \Rightarrow Finish



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Training

An *oracle* provides the transition sequence given the correct graph:

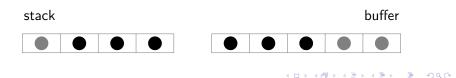


SHIFT, RIGHT-EDGE_A, SHIFT, SWAP, RIGHT-EDGE_P, REDUCE, SHIFT, SHIFT, NODE_F, REDUCE, SHIFT, SHIFT, NODE_C, REDUCE, SHIFT, RIGHT-EDGE_P, SHIFT, RIGHT-EDGE_F, REDUCE, SHIFT, SWAP, RIGHT-EDGE_D, REDUCE, SWAP, RIGHT-EDGE_A, REDUCE, REDUCE, SHIFT, SHIFT, LEFT-REMOTE_A, SHIFT, RIGHT-EDGE_C, FINISH

Learn to greedily predict transition based on current state. Experimenting with three classifiers:

Sparse	Perceptron with sparse features (Zhang and Nivre, 2011).
MLP	Embeddings + feedforward NN (Chen and Manning, 2014).
BiLSTM	Embeddings + deep bidirectional LSTM + MLP
	(Kiperwasser and Goldberg, 2016).

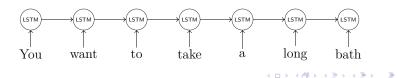
Features: words, POS, syntactic dependencies, existing edge labels from the stack and buffer + parents, children, grandchildren; ordinal features (height, number of parents and children)



Learn to greedily predict transition based on current state. Experimenting with three classifiers:

SparsePerceptron with sparse features (Zhang and Nivre, 2011).MLPEmbeddings + feedforward NN (Chen and Manning, 2014).BiLSTMEmbeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

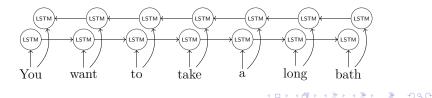
Effective "lookahead" encoded in the representation.



Learn to greedily predict transition based on current state. Experimenting with three classifiers:

SparsePerceptron with sparse features (Zhang and Nivre, 2011).MLPEmbeddings + feedforward NN (Chen and Manning, 2014).BiLSTMEmbeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Effective "lookahead" encoded in the representation.



Learn to greedily predict transition based on current state. Experimenting with three classifiers:

SparsePerceptron with sparse features (Zhang and Nivre, 2011).MLPEmbeddings + feedforward NN (Chen and Manning, 2014).BiLSTMEmbeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

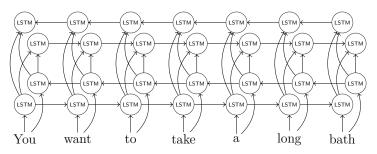
Effective "lookahead" encoded in the representation.

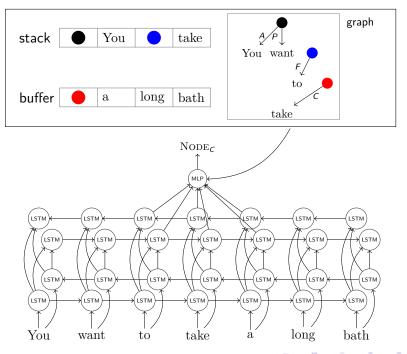


◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目・ のへぐ

Learn to greedily predict transition based on current state. Experimenting with three classifiers:

SparsePerceptron with sparse features (Zhang and Nivre, 2011).MLPEmbeddings + feedforward NN (Chen and Manning, 2014).BiLSTMEmbeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).





56

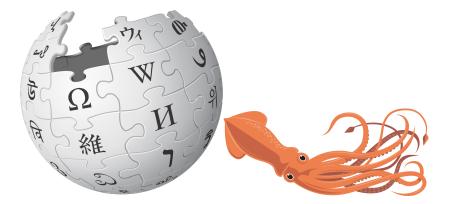
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Experiments

(ロ)、(型)、(E)、(E)、 E) の(()

Experimental Setup

- UCCA Wikipedia corpus $\begin{pmatrix} \text{train} & \text{dev} & \text{test} \\ 4268 + 454 + 503 \text{ sentences} \end{pmatrix}$.
- Out-of-domain: English part of English-French parallel corpus, *Twenty Thousand Leagues Under the Sea* (506 sentences).



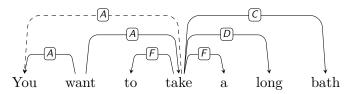
Baselines

No existing UCCA parsers \Rightarrow conversion-based approximation. Bilexical DAG parsers (allow reentrancy):

- DAGParser (Ribeyre et al., 2014): transition-based.
- TurboParser (Almeida and Martins, 2015): graph-based.

Tree parsers (all transition-based):

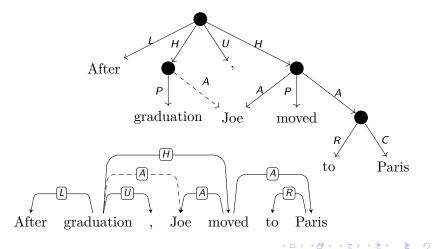
- MaltParser (Nivre et al., 2007): bilexical tree parser.
- Stack LSTM Parser (Dyer et al., 2015): bilexical tree parser.
- UPARSE (Maier, 2015): allows non-terminals, discontinuity.



UCCA bilexical DAG approximation (for tree, delete remote edges).

Bilexical Graph Approximation

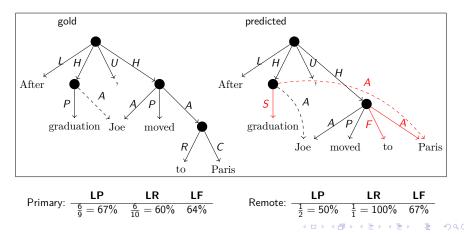
- 1. Convert UCCA to bilexical dependencies.
- 2. Train bilexical parsers and apply to test sentences.
- 3. Reconstruct UCCA graphs and compare with gold standard.



Evaluation

Comparing graphs over the same sequence of tokens,

- Match edges by their terminal yield and label.
- Calculate labeled precision, recall and F1 scores.
- Separate primary and remote edges.



Results

 $TUPA_{BiLSTM}$ obtains the highest F-scores in all metrics:

	Primary edges		Remote edges			
	LP	LR	LF	LP	LR	LF
TUPA _{Sparse}	64.5	63.7	64.1	19.8	13.4	16
TUPA _{MLP}	65.2	64.6	64.9	23.7	13.2	16.9
TUPA _{Bilstm}	74.4	72.7	73.5	47.4	51.6	49.4
Bilexical DAG			(91)			(58.3)
DAGParser	61.8	55.8	58.6	9.5	0.5	1
TurboParser	57.7	46	51.2	77.8	1.8	3.7
Bilexical tree			(91)			-
MaltParser	62.8	57.7	60.2	-	-	_
Stack LSTM	73.2	66.9	69.9	_	_	_
Tree			(100)			_
UPARSE	60.9	61.2	61.1	-	_	_

Results on the Wiki test set.

Results

Comparable on out-of-domain test set:

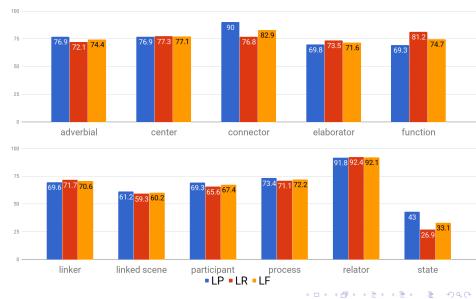
	Primary edges		Remote edges			
	LP	LR	LF	LP	LR	LF
TUPA _{Sparse}	59.6	59.9	59.8	22.2	7.7	11.5
TUPA _{MLP}	62.3	62.6	62.5	20.9	6.3	9.7
TUPA _{Bilstm}	68.7	68.5	68.6	38.6	18.8	25.3
Bilexical DAG			(91.3)			(43.4)
DAGParser	56.4	50.6	53.4	-	0	0
TurboParser	50.3	37.7	43.1	100	0.4	0.8
Bilexical tree			(91.3)			_
MaltParser	57.8	53	55.3	-	_	-
Stack LSTM	66.1	61.1	63.5	-	-	_
Tree			(100)			-
UPARSE	52.7	52.8	52.8	-	-	_

Results on the 20K Leagues out-of-domain set.

Discussion

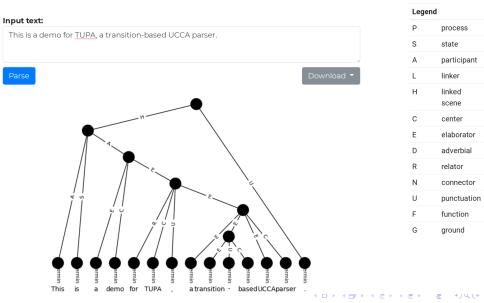
Fine-Grained Analysis

Evaluation of TUPA $_{\mbox{BiLSTM}}$ per edge type:



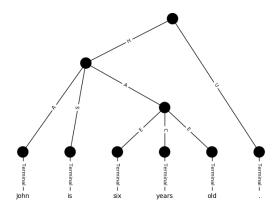
Online Demo

http://bit.ly/tupademo



Error Analysis

Copular clauses tend to be parsed as identity.



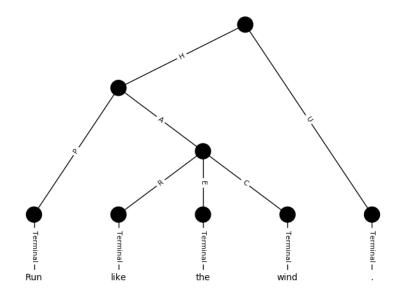
But, from the guidelines²:

$$\operatorname{John}_{A}\left[\operatorname{is}_{F}\left[\left[\operatorname{six}_{E}\operatorname{years}_{C}\right]_{E}\operatorname{old}_{C}\right]_{C}\right]_{S}$$

²http://www.cs.huji.ac.il/~oabend/ucca/guidelines.pdf > < = > = <?</p>

Error Analysis

The participant category is used when adverbial should be.

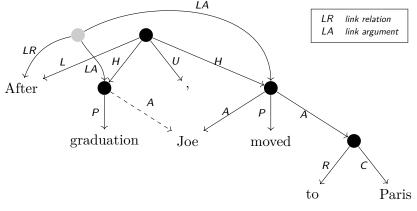


Future Work

Broad-Coverage UCCA Parsing

Already annotated in UCCA, but not yet handled by TUPA:

- Linkage: inter-scene relations (see example).
- Implicit units: units not mentioned at all in the text.
- Inter-sentence relations: discourse structure.



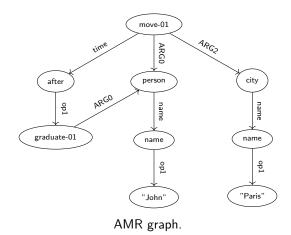
UCCA graph with a Linkage relation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

AMR Parsing

Similar in structure and content, but poses several challenges:

- Node labels: not just edges, not also nodes are labeled.
- Partial alignment: orphan tokens, implicit concepts.



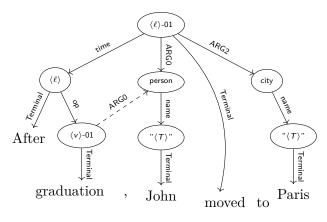
71

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

AMR Parsing

Similar in structure and content, but poses several challenges:

- Node labels: not just edges, not also nodes are labeled.
- Partial alignment: orphan tokens, implicit concepts.

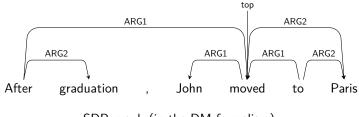


AMR graph in UCCA++ format.

Semantic Dependency Parsing

Similar structure, but without non-terminal nodes.

By applying bilexical conversion in reverse, TUPA can be used.

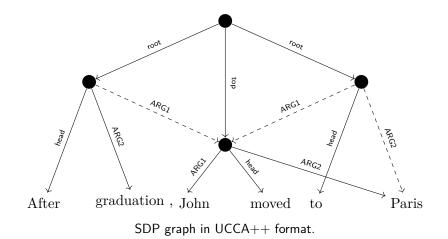


SDP graph (in the DM formalism).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Semantic Dependency Parsing

Similar structure, but without non-terminal nodes. By applying bilexical conversion in reverse, TUPA can be used.



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Conclusion

- UCCA's semantic distinctions require a graph structure including non-terminals, reentrancy and discontinuity.
- TUPA is an accurate transition-based UCCA parser, and the **first** to support UCCA and any DAG over the text tokens.
- Outperforms strong conversion-based baselines.

Code: github.com/danielhers/tupa Demo: bit.ly/tupademo Corpora: cs.huji.ac.il/~oabend/ucca.html

Conclusion

- UCCA's semantic distinctions require a graph structure including non-terminals, reentrancy and discontinuity.
- TUPA is an accurate transition-based UCCA parser, and the **first** to support UCCA and any DAG over the text tokens.
- Outperforms strong conversion-based baselines.

Future Work:

- More languages (German corpus construction is underway).
- Broad coverage UCCA parsing.
- Parsing other schemes, such as AMR and SDP.
- Text simplification, MT evaluation and other applications.

Code: github.com/danielhers/tupa Demo: bit.ly/tupademo Corpora: cs.huji.ac.il/~oabend/ucca.html

Conclusion

- UCCA's semantic distinctions require a graph structure including non-terminals, reentrancy and discontinuity.
- TUPA is an accurate transition-based UCCA parser, and the **first** to support UCCA and any DAG over the text tokens.
- Outperforms strong conversion-based baselines.

Future Work:

- More languages (German corpus construction is underway).
- Broad coverage UCCA parsing.
- Parsing other schemes, such as AMR and SDP.
- Text simplification, MT evaluation and other applications.

Code: github.com/danielhers/tupa Demo: bit.ly/tupademo Corpora: cs.huji.ac.il/~oabend/ucca.html

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

References I

Abend, O. and Rappoport, A. (2013).

Universal Conceptual Cognitive Annotation (UCCA). In *Proc. of ACL*, pages 228–238.

Abend, O. and Rappoport, A. (2017).

The state of the art in semantic representation. In *Proc. of ACL*.

- Abend, O., Yerushalmi, S., and Rappoport, A. (2017). Uccaapp: Web-application for syntactic and semantic phrase-based annotation. Proceedings of ACL 2017, System Demonstrations, pages 109–114.
- Almeida, M. S. C. and Martins, A. F. T. (2015).

Lisbon: Evaluating TurboSemanticParser on multiple languages and out-of-domain data. In *Proc. of SemEval*, pages 970–973.

- Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Palmer, M., and Schneider, N. (2013).
 Abstract Meaning Representation for sembanking.
 In Proc. of the Linguistic Annotation Workshop.
- Birch, A., Abend, O., Bojar, O., and Haddow, B. (2016). HUME: Human UCCA-based evaluation of machine translation. In Proc. of EMNLP, pages 1264–1274.
- Chen, D. and Manning, C. (2014).

A fast and accurate dependency parser using neural networks. In *Proc. of EMNLP*, pages 740–750.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

References II

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015). Transition-based dependency parsing with stack long short-term memory. In Proc. of ACL, pages 334–343.

Kiperwasser, E. and Goldberg, Y. (2016).

Simple and accurate dependency parsing using bidirectional LSTM feature representations. TACL, 4:313–327.

Maier, W. (2015).

Discontinuous incremental shift-reduce parsing. In *Proc. of ACL*, pages 1202–1212.

Nivre, J. (2004).

Incrementality in deterministic dependency parsing.

In Keller, F., Clark, S., Crocker, M., and Steedman, M., editors, *Proceedings of the ACL Workshop Incremental Parsing: Bringing Engineering and Cognition Together*, pages 50–57, Barcelona, Spain. Association for Computational Linguistics.

Nivre, J. (2009).

Non-projective dependency parsing in expected linear time. In *Proc. of ACL*, pages 351–359.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., and Marsi, E. (2007). MaltParser: A language-independent system for data-driven dependency parsing. *Natural Language Engineering*, 13(02):95–135.

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D., Cinková, S., Flickinger, D., Hajic, J., Ivanova, A., and Uresová, Z. (2016). Towards comparability of linguistic graph banks for semantic parsing. In LREC.

References III

Ribeyre, C., Villemonte de la Clergerie, E., and Seddah, D. (2014). Alpage: Transition-based semantic graph parsing with syntactic features. In Proc. of SemEval, pages 97–103.

Sulem, E., Abend, O., and Rappoport, A. (2015).

Conceptual annotations preserve structure across translations: A French-English case study. In *Proc. of S2MT*, pages 11–22.

Zhang, Y. and Nivre, J. (2011).

Transition-based dependency parsing with rich non-local features.

In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 188–193.

Backup

UCCA Corpora

		Wiki		20K		
	Train	Dev	Test	Leagues		
# passages	300	34	33	154		
# sentences	4268	454	503	506		
# nodes	298,993	33,704	35,718	29,315		
% terminal	42.96	43.54	42.87	42.09		
% non-term.	58.33	57.60	58.35	60.01		
% discont.	0.54	0.53	0.44	0.81		
% reentrant	2.38	1.88	2.15	2.03		
# edges	287,914	32,460	34,336	27,749		
% primary	98.25	98.75	98.74	97.73		
% remote	1.75	1.25	1.26	2.27		
Average per non-terminal node						
# children	1.67	1.68	1.66	1.61		

Corpus statistics.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Evaluation

Mutual edges between predicted graph $G_p = (V_p, E_p, \ell_p)$ and gold graph $G_g = (V_g, E_g, \ell_g)$, both over terminals $W = \{w_1, \ldots, w_n\}$:

$$M(G_{p}, G_{g}) = \left\{ (e_{1}, e_{2}) \in E_{p} \times E_{g} \mid y(e_{1}) = y(e_{2}) \wedge \ell_{p}(e_{1}) = \ell_{g}(e_{2}) \right\}$$

The yield $y(e) \subseteq W$ of an edge e = (u, v) in either graph is the set of terminals in W that are descendants of v. ℓ is the edge label.

Labeled precision, recall and F-score are then defined as:

$$LP = \frac{|M(G_p, G_g)|}{|E_p|}, \quad LR = \frac{|M(G_p, G_g)|}{|E_g|},$$
$$LF = \frac{2 \cdot LP \cdot LR}{LP + LR}.$$

Two variants: one for primary edges, and another for remote edges.