A Transition-Based Directed Acyclic Graph Parser
for Universal Conceptual Cognitive Annotation

Daniel Hershcovich, Omri Abend and Ari Rappoport

¢
oI M A TN
THE HEBREW UNIVERSITY OF JERUSALEM

Tel Aviv University
January 9, 2018

TUPA — Transition-based UCCA Parser

The first parser to support the combination of three properties:

1. Non-terminal nodes — entities and events over the text

take a long bath

N

TUPA — Transition-based UCCA Parser

The first parser to support the combination of three properties:
1. Non-terminal nodes — entities and events over the text

2. — allow argument sharing
You want
to

take a long bath

TUPA — Transition-based UCCA Parser

The first parser to support the combination of three properties:
1. Non-terminal nodes — entities and events over the text
2. — allow argument sharing
3. Discontinuity — conceptual units are split

— needed for many semantic schemes (e.g. AMR, UCCA).

|

You want
to

take a long bath

Introduction

Linguistic Structure Annotation Schemes

e Syntactic dependencies
e Semantic dependencies (Oepen et al., 2016)

¢ AMR (Banarescu et al., 2013)

UCCA (Abend and Rappoport, 2013)

1

Other semantic representation schemes

Abstract away from syntactic detail that does not affect meaning:

‘...bathed‘:‘...tookabath‘

!See recent survey (Abend and Rappoport, 2017)

Syntactic Dependencies

o Bilexical tree: syntactic structure representation.

e Fast and accurate parsers (e.g. transition-based).

You want

to

take a bath

Non-projectivity (discontinuity) is a challenge (Nivre, 2009).

nmod

hedrlng is

(root)
nsu bJ pass
(aux:pass)

scheduled on issue today

Semantic Dependencies

e Bilexical graph: predicate-argument representation.

e Derived from theories of syntax-semantics interface.

(ARGI]
ARG2
(ARG2) (BV)
(ARG ARG
want to take a long bath

DELPH-IN MRS-derived bi-lexical dependencies (DM).

top
TWHEN
DIR3-arg
ACT-arg
After graduation , Joe moved to Paris

Prague Dependency Treebank tectogrammatical layer (PSD).

The UCCA Semantic Representation Scheme

10

Universal Conceptual Cognitive Annotation (UCCA)

—— primary edge

H u - - - remote edge
After)
\\ A
P A P A
Sy
graduation Joe moved
After graduation, Joe moved to Paris
P process S state A participant R C
L linker H linked scene | C center
E elaborator | D adverbial R relator
N connector | U punctuation | F function .
c to Paris
ground

The UCCA Semantic Representation Scheme

Cross-linguistically applicable (Abend and Rappoport, 2013).
Stable in translation (Sulem et al., 2015).

Fast and intuitive to annotate (Abend et al., 2017).
Facilitates MT human evaluation (Birch et al., 2016).

English

7. >
IBM happened to choose a company with a crucial vulnerability , despite vetting .
| o / 2o 0~ — —)\
| = 2 -3 _— \
IBM chose in-mistake with-company very vulnerable despite that-checked it beforehand
n‘a Nina myv-a n1an-a TIND nyna mmo npPT1I-Y TMN NI

Hebrew

11

12

Graph Structure

UCCA generates a directed acyclic graph (DAG).

Text tokens are terminals, complex units are non-terminal nodes.
Remote edges enable for argument sharing.

Phrases may be discontinuous (e.g., multi-word expressions).

—— primary edge

- - - remote edge

You want

P process

A participant

C center take a long bath
D adverbial

F function You want to take a long bath

Transition-based UCCA Parsing

13

Transition-Based Parsing

First used for dependency parsing (Nivre, 2004).
Parse text wy ... w, to graph G incrementally by applying
transitions to the parser state: stack, buffer and constructed graph.

14

Transition-Based Parsing

First used for dependency parsing (Nivre, 2004).
Parse text wy ... w, to graph G incrementally by applying

transitions to the parser state: stack, buffer and constructed graph.

Initial state:

stack buffer

E ‘ You ‘ Want‘ to ‘ take ‘ a ‘ long‘ bath‘

15

Transition-Based Parsing

First used for dependency parsing (Nivre, 2004).
Parse text wy ... w, to graph G incrementally by applying

transitions to the parser state: stack, buffer and constructed graph.

Initial state:
stack buffer
E ‘ You ‘ Want‘ to ‘ take ‘ a ‘ long‘ bath‘

TUPA transitions:
{SHIFT, REDUCE, NODEY, LEFT-EDGExX, RIGHT-EDGEX,
LEFT-REMOTEx, RIGHT-REMOTEY, SWAP, FINISH}

Support non-terminal nodes, and discontinuity.

16

Example

= SHIFT

stack

@ [vor]

buffer

WWant‘to

‘take ‘a

\ long \ bath \

graph

17

Example

= RIGHT-EDGE,h

stack

| @ |You

buffer

WWant‘to

‘take ‘a

\ long \ bath \

graph /

You

18

Example

= SHIFT

stack

‘ o WYbu |\Nant|

buffer

‘to

‘take ‘a

\ long \ bath \

graph /'

You

19

Example

= SWAP

stack

@]

buffer

|Ybu |to

‘take ‘a

\ long \ bath \

graph /'

You

20

Example

= RIGHT-EDGEp

stack

@ [vant

buffer

‘You ’to

‘take ‘a

‘ long ‘ bath ‘

graph
P

You want

21

Example

= REDUCE

stack buffer

@ ‘ to ‘ take ‘ a ‘ long ‘ bath ‘

graph
P

You want

Example

= SHIFT
stack buffer
@ [vor] to Jtake o [long | bath]

graph
P

You want

23

Example

= SHIFT
stack buffer
‘ () ‘ You | to | ‘ take ‘ a ‘ long ‘ bath ‘

graph
P

You want

24

Example

= NODEf
stack buffer
‘ () ‘ You ‘ to ‘ | o | take ‘ a ‘ long ‘ bath ‘

graph
//PT
You want
/

to

25

Example

= REDUCE
stack buffer
@ Vo @ ke [0 [Toug | buih]

graph
//PT
You want
/

to

26

Example

= SHIFT

stack

@ vu[@®]

buffer

‘take ‘a

\ long \ bath \

graph
//PT
You want
/

to

27

Example

= SHIFT

stack

‘ () ‘You ‘ o |take|

buffer

a

\ long \ bath \

graph
//PT
You want
/

to

28

Example

= NODE¢

stack

‘ () ‘You ‘ o ‘take‘

buffer

K HE

\ long \ bath \

graph
P

take

You want
F

to

29

Example

= REDUCE

stack

@ You | @

buffer

@ |»

\ long \ bath \

graph
P

take

You want
F

to

30

Example

= SHIFT

stack

@ Yu @[@]

buffer

a

\ long \ bath \

graph
//PT
You want
/

to

take

31

Example

= RIGHT-EDGEp

stack

@ vu [0 @]

buffer

a

\ long \ bath \

graph
//PT
You want
/\

to

C

take

32

Example

= SHIFT

stack

@ Yu @ @ |0

buffer

graph

You

take

33

Example

= RIGHT-EDGEF

stack

@ Yu @[@ |n

buffer

graph

You

take

34

Example

= REDUCE
stack buffer
@ Yu @ @
graph
p
You want

take

35

Example

= SHIFT

stack

‘.‘You‘.‘.|long|

buffer

graph

You

take

36

Example

= SWAP
stack buffer
@ vou | @ g (@ Jbutt
graph
P
You want

take

37

Example

= RIGHT-EDGEp

stack buffer
@ [vou [@ [ione] @ [buth]
graph
P
You want

take

38

Example

= REDUCE
stack buffer
@ [Yu @ @ [bath
graph

P

You want
D
to
take long

39

Example

= SWAP
stack buffer
AR [ou] @ Dot
graph
P
You

take

long

40

Example

= RIGHT-EDGE,h

stack buffer
eTe] Vou | @ Thaih
graph
P
You

take

long

41

Example

= REDUCE
stack buffer
o You | @ Toatn
graph
P A
You want
D
to
take long

Example

= REDUCE

stack

H

buffer

‘You ‘ o ‘bath‘

graph

You

take

long

43

Example

= SHIFT
stack buffer
You @ |bath
graph
P
You

take

long

44

Example

= SHIFT
stack buffer
You [@
graph
P
You

take

long

45

Example

= LEFT-REMOTE4

stack buffer
o[@
graph
P
You want
K

take

46

Example

= SHIFT

stack

‘You ‘ o |bath|

buffer

H

graph

take

47

Example

= RIGHT-EDGE(¢

stack

‘You | o |bath|

buffer

graph

take

long

bath

H

48

Example

= FINISH

stack

‘You ‘ o ‘bath‘

buffer

H

graph

bath

49

Training

An oracle provides the transition sequence given the correct graph:

take a long bath

SHIFT, RIGHT-EDGE,, SHIFT, SWAP, RIGHT-EDGEp, REDUCE, SHIFT,
SHIFT, NODEF, REDUCE, SHIFT, SHIFT, NODE¢, REDUCE, SHIFT,
RIGHT-EDGEp, SHIFT, RIGHT-EDGEF, REDUCE, SHIFT, SWAP,
RIGHT-EDGEp, REDUCE, SWAP, RIGHT-EDGE4s, REDUCE, REDUCE, SHIFT,
SHIFT, LEFT-REMOTE4, SHIFT, RIGHT-EDGE¢, FINISH

50

51

TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Features: words, POS, syntactic dependencies, existing edge labels
from the stack and buffer 4 parents, children, grandchildren;
ordinal features (height, number of parents and children)

stack buffer

52

TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

You want to take long bath

53

TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

You want to take long bath

54

TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

LSTM LST™M LST™M LSTM LSTM LST™M

BinE w

You want to take long bath

55

TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

want to tak

h
stack‘ o ‘You ‘ o ‘take‘ %? 5

You want f
F
to
buffer ‘ o ‘ a ‘ long ‘ bath ‘ /.

You want to take a long

Experiments

57

Experimental Setup

train

dev
e UCCA Wikipedia corpus (4268 + 4§4 + 503 sentences).

test

e Out-of-domain: English part of English-French parallel corpus,
Twenty Thousand Leagues Under the Sea (506 sentences).

58

59

Baselines
No existing UCCA parsers = conversion-based approximation.

Bilexical DAG parsers (allow):
e DAGParser (Ribeyre et al., 2014): transition-based.

e TurboParser (Almeida and Martins, 2015): graph-based.

Tree parsers (all transition-based):
e MaltParser (Nivre et al., 2007): bilexical tree parser.
e Stack LSTM Parser (Dyer et al., 2015): bilexical tree parser.
e UPARSE (Maier, 2015): allows non-terminals, discontinuity.

2 G \\ @
; B— —0
|
|
bath

take a long

UCCA bilexical DAG approximation (for tree, delete remote edges).

Bilexical Graph Approximation

1. Convert UCCA to bilexical dependencies.
2. Train bilexical parsers and apply to test sentences.
3. Reconstruct UCCA graphs and compare with gold standard.

0 \J
After () J
T N

M

graduation Joe moved
R C
o . L \ m Paris

After graduation moved to Paris

60

Evaluation

Comparing graphs over the same sequence of tokens,
e Match edges by their terminal yield and label.
e Calculate labeled precision, recall and F1 scores.

e Separate primary and remote edges.

gold predicted

.
graduation
i

~

Joe

briar. _ LP LR LF Remote: . LP LR LF
MY TE_671% & = 60% 64% T 1=50% 1=100% 67%

Results

62

TUPARg;LsTMm obtains the highest F-scores in all metrics:

Primary edges

Remote edges

LP LR LF LP LR LF
TUPAsparse 64.5 63.7 64.1 | 198 134 16
TUPAMLP 65.2 646 649 | 237 132 169
TUPAgiLsTm | 74.4 727 73.5 | 474 516 49.4
Bilexical DAG (91) (58.3)
DAGParser 61.8 558 5386 | 95 0.5 1
TurboParser | 57.7 46 51.2 | 77.8 1.8 3.7
Bilexical tree (91) -
MaltParser 62.8 57.7 60.2 - - -
Stack LSTM | 73.2 66.9 69.9 - - -
Tree (100) -
UPARSE 60.9 61.2 61.1 - - -

Results on the Wiki test set.

Results

Comparable on out-of-domain test set:

Primary edges

63

Remote edges

LP LR LF LP LR LF
TUPAsparse 506 59.9 598 | 222 7.7 115
TUPAMLP 62.3 626 625|209 6.3 9.7
TUPAgiLsTtm | 68.7 68.5 68.6 | 38.6 18.8 25.3
Bilexical DAG (91.3) (43.4)
DAGParser 56.4 50.6 534 - 0 0
TurboParser | 50.3 37.7 43.1 | 100 0.4 0.8
Bilexical tree (91.3) -
MaltParser 57.8 53 553 - - -
Stack LSTM | 66.1 61.1 63.5 - - -
Tree (100) -
UPARSE 52.7 52.8 52.8 - - -

Results on the 20K Leagues out-of-domain set.

Discussion

64

Fine-Grained Analysis

100

Evaluation of TUPAg; sTMm per edge type:

65

100

center

connector

elaborator

linker

linked scene participant process
=P =R =LF

relator

function

66

Online Demo

http://bit.ly/tupademo

Legend
Input text:
i i P process
This is a demo for TUPA, a transition-based UCCA parser.
S state
p A participant
H linked
scene
" c center
E elaborator
4
D adverbial
s R relator
< N connector
T v U punctuation
w O \& F function
G ground

o// /«u

i 3 3 3 3§ 3 2 382 2 3§ ¢ ER
5 5 5 5 5 5 5 5 5 5 5 5
This is a demo for TUPA atransition - basedUCCAparser

http://bit.ly/tupademo

67

Error Analysis

Copular clauses tend to be parsed as identity.

Q

)

Y

g
3
5

S——_
— leuial <.\

©
eores >

e

2

= jeun.
- —jeuwa)

@
Q.
E
j=N
o

|
John years

But, from the guidelines?:

Johny [is,: [sixeyearsc]poldc] C} <

*http://www.cs.huji.ac.il/~oabend/ucca/guidelines.pdf

http://www.cs.huji.ac.il/~oabend/ucca/guidelines.pdf

Error Analysis

The participant category is used when adverbial should be.

SN
/NN

3 3 3 3 3
2 2 2 2 El
=1 =1 =1 =1 =1
@ @ @ @ @
| | | | |

Run like the wind

68

Future Work

69

Broad-Coverage UCCA Parsing

Already annotated in UCCA, but not yet handled by TUPA:
e Linkage: inter-scene relations (see example).
e Implicit units: units not mentioned at all in the text.

e [nter-sentence relations: discourse structure.
LA

LR link relation
LA link argument

graduation Joe moved

to Paris

UCCA graph with a Linkage relation.

71

AMR Parsing

Similar in structure and content, but poses several challenges:
e Node labels: not just edges, not also nodes are labeled.

e Partial alignment: orphan tokens, implicit concepts.

move-01

AMR graph.

AMR Parsing

Similar in structure and content, but poses several challenges:
e Node labels: not just edges, not also nodes are labeled.
e Partial alignment: orphan tokens, implicit concepts.

(T3
BulwI | U aweu

|eulua)

graduation , jonn Paris

moved to

AMR graph in UCCA-++ format.

73

Semantic Dependency Parsing

Similar structure, but without non-terminal nodes.
By applying bilexical conversion in reverse, TUPA can be used.

top
ARG1 ARG2
ARG2 ARG1 ARG1 ARG2
After graduation , John moved to Paris

SDP graph (in the DM formalism).

Semantic Dependency Parsing

Similar structure, but without non-terminal nodes.
By applying bilexical conversion in reverse, TUPA can be used.

(o "oo¢

<~ A4
JRe, Y
N - \
~ \
%
(4
\\‘Q
\
\
\
\
Az
After graduation , John moved to Paris

SDP graph in UCCA++ format.

74

Conclusion

e UCCA's semantic distinctions require a graph structure
including non-terminals, and discontinuity.

e TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

e Qutperforms strong conversion-based baselines.

Code: github.com/danielhers/tupa
Demo: bit.ly/tupademo
Corpora: cs.huji.ac.il/~oabend/ucca.html

github.com/danielhers/tupa
bit.ly/tupademo
cs.huji.ac.il/~oabend/ucca.html

Conclusion

e UCCA's semantic distinctions require a graph structure
including non-terminals, and discontinuity.

e TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

e Qutperforms strong conversion-based baselines.
Future Work:

More languages (German corpus construction is underway).

Broad coverage UCCA parsing.
Parsing other schemes, such as AMR and SDP.
Text simplification, MT evaluation and other applications.

Code: github.com/danielhers/tupa
Demo: bit.ly/tupademo
Corpora: cs.huji.ac.il/~oabend/ucca.html

76

github.com/danielhers/tupa
bit.ly/tupademo
cs.huji.ac.il/~oabend/ucca.html

v

Conclusion

e UCCA's semantic distinctions require a graph structure
including non-terminals, and discontinuity.

e TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

e Qutperforms strong conversion-based baselines.
Future Work:

More languages (German corpus construction is underway).

Broad coverage UCCA parsing.
Parsing other schemes, such as AMR and SDP.
Text simplification, MT evaluation and other applications.

Code: github.com/danielhers/tupa
Demo: bit.ly/tupademo
Corpora: cs.huji.ac.il/~oabend/ucca.html

Thank you!

github.com/danielhers/tupa
bit.ly/tupademo
cs.huji.ac.il/~oabend/ucca.html

References |

Abend, O. and Rappoport, A. (2013).
Universal Conceptual Cognitive Annotation (UCCA).
In Proc. of ACL, pages 228-238.

Abend, O. and Rappoport, A. (2017).
The state of the art in semantic representation.
In Proc. of ACL.

Abend, O., Yerushalmi, S., and Rappoport, A. (2017).
Uccaapp: Web-application for syntactic and semantic phrase-based annotation.
Proceedings of ACL 2017, System Demonstrations, pages 109-114

Almeida, M. S. C. and Martins, A. F. T. (2015).

Lisbon: Evaluating TurboSemanticParser on multiple languages and out-of-domain data.
In Proc. of SemEval, pages 970-973.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Palmer, M., and
Schneider, N. (2013).
Abstract Meaning Representation for sembanking.
In Proc. of the Linguistic Annotation Workshop.

Birch, A., Abend, O., Bojar, O., and Haddow, B. (2016).
HUME: Human UCCA-based evaluation of machine translation.
In Proc. of EMNLP, pages 1264-1274.

Chen, D. and Manning, C. (2014).

A fast and accurate dependency parser using neural networks.
In Proc. of EMNLP, pages 740-750.

78

79

References |l

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015).
Transition-based dependeny parsing with stack long short-term memory.
In Proc. of ACL, pages 334-343.

Kiperwasser, E. and Goldberg, Y. (2016).
Simple and accurate dependency parsing using bidirectional LSTM feature representations.
TACL, 4:313-327.

Maier, W. (2015).
Discontinuous incremental shift-reduce parsing.
In Proc. of ACL, pages 1202-1212.

Nivre, J. (2004).
Incrementality in deterministic dependency parsing.
In Keller, F., Clark, S., Crocker, M., and Steedman, M., editors, Proceedings of the ACL Workshop
Incremental Parsing: Bringing Engineering and Cognition Together, pages 50-57, Barcelona, Spain.
Association for Computational Linguistics.

Nivre, J. (2009).
Non-projective dependency parsing in expected linear time.
In Proc. of ACL, pages 351-359

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kiibler, S., Marinov, S., and Marsi, E. (2007).
MaltParser: A language-independent system for data-driven dependency parsing.
Natural Language Engineering, 13(02):95-135.

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D., Cinkova, S., Flickinger, D., Hajic, J., Ivanova, A., and Uresova,
Z. (2016).
Towards comparability of linguistic graph banks for semantic parsing.
In LREC.

References 1l

Ribeyre, C., Villemonte de la Clergerie, E., and Seddah, D. (2014).
Alpage: Transition-based semantic graph parsing with syntactic features.
In Proc. of SemEval, pages 97-103.
Sulem, E., Abend, O., and Rappoport, A. (2015).
Conceptual annotations preserve structure across translations: A French-English case study.
In Proc. of S2MT, pages 11-22.
Zhang, Y. and Nivre, J. (2011).
Transition-based dependency parsing with rich non-local features.

In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 188—193.

80

Backup

81

UCCA Corpora

Wiki 20K
Train Dev Test Leagues
passages 300 34 33 154
sentences 4268 454 503 506
nodes 298,993 33,704 35,718 | 29,315
% terminal 42,96 4354 4287 42.09

% non-term. 58.33 57.60 58.35 60.01
% discont. 0.54 0.53 0.44 0.81
% reentrant 2.38 1.88 2.15 2.03

edges 287,914 32,460 34,336 | 27,749
% primary 98.25 98.75 98.74 97.73
% remote 1.75 1.25 1.26 2.27

Average per non-terminal node

children 1.67 1.68 1.66 1.61

Corpus statistics.

83

Evaluation

Mutual edges between predicted graph G, = (Vp, Ep, £,) and gold
graph Gg = (Vg, Eg,{g), both over terminals W = {w,..., w,}:

M(Gp. Gg) = {(e1,e2) € EpxEg | y(er) = y(e2)Alpler) = lg(e2) |

The yield y(e) C W of an edge e = (u, v) in either graph is the set
of terminals in W that are descendants of v. /7 is the edge label.

Labeled precision, recall and F-score are then defined as:

L Mo Gl MGy Gp)l
|Epl | Eg|
2.LP-LR
F=Tri R

Two variants: one for primary edges, and another for remote edges.

	Introduction
	The UCCA Semantic Representation Scheme
	Transition-based UCCA Parsing
	Experiments
	Discussion
	Future Work
	Backup

