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TUPA — Transition-based UCCA Parser

The first parser to support the combination of three properties:

1. Non-terminal nodes — entities and events over the text
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TUPA — Transition-based UCCA Parser

The first parser to support the combination of three properties:
1. Non-terminal nodes — entities and events over the text
2. — allow argument sharing
3. Discontinuity — conceptual units are split

— needed for many semantic schemes (e.g. AMR, UCCA).
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Introduction



Linguistic Structure Annotation Schemes

e Syntactic dependencies
e Semantic dependencies (Oepen et al., 2016)

¢ AMR (Banarescu et al., 2013)

UCCA (Abend and Rappoport, 2013)
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Other semantic representation schemes

Abstract away from syntactic detail that does not affect meaning:

‘...bathed‘:‘...tookabath‘

!See recent survey (Abend and Rappoport, 2017)



Syntactic Dependencies

o Bilexical tree: syntactic structure representation.

e Fast and accurate parsers (e.g. transition-based).

You want

to

take a bath

Non-projectivity (discontinuity) is a challenge (Nivre, 2009).

nmod
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scheduled  on issue  today




Semantic Dependencies

e Bilexical graph: predicate-argument representation.

e Derived from theories of syntax-semantics interface.

(ARGI]
ARG2
(ARG2) (BV)
(ARG ARG
want to take a long bath

DELPH-IN MRS-derived bi-lexical dependencies (DM).

top
TWHEN
DIR3-arg
ACT-arg
After graduation , Joe moved to Paris

Prague Dependency Treebank tectogrammatical layer (PSD).



The UCCA Semantic Representation Scheme
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Universal Conceptual Cognitive Annotation (UCCA)

—— primary edge

H u - - - remote edge
After )
\\ A
P A P A
Sy
graduation Joe moved
After graduation, Joe moved to Paris
P process S state A participant R C
L linker H  linked scene | C  center
E  elaborator | D adverbial R relator
N connector | U punctuation | F  function .
c to Paris
ground




The UCCA Semantic Representation Scheme

Cross-linguistically applicable (Abend and Rappoport, 2013).
Stable in translation (Sulem et al., 2015).

Fast and intuitive to annotate (Abend et al., 2017).
Facilitates MT human evaluation (Birch et al., 2016).

English

7. >
IBM happened to choose a company with a crucial vulnerability , despite vetting .
| o / 2o 0~ — — )\
| = 2 -3 _— \
IBM chose in-mistake with-company very vulnerable despite that-checked it beforehand
n‘a Nina myv-a n1an-a TIND nyna mmo npPT1I-Y TMN NI

Hebrew
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Graph Structure

UCCA generates a directed acyclic graph (DAG).

Text tokens are terminals, complex units are non-terminal nodes.
Remote edges enable for argument sharing.

Phrases may be discontinuous (e.g., multi-word expressions).

—— primary edge

- - - remote edge

You want

P process

A participant

C center take a long bath
D  adverbial

F function You want to take a long bath




Transition-based UCCA Parsing
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Transition-Based Parsing

First used for dependency parsing (Nivre, 2004).
Parse text wy ... w, to graph G incrementally by applying
transitions to the parser state: stack, buffer and constructed graph.
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Transition-Based Parsing

First used for dependency parsing (Nivre, 2004).
Parse text wy ... w, to graph G incrementally by applying

transitions to the parser state: stack, buffer and constructed graph.

Initial state:

stack buffer

E ‘ You ‘ Want‘ to ‘ take ‘ a ‘ long‘ bath‘
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Transition-Based Parsing

First used for dependency parsing (Nivre, 2004).
Parse text wy ... w, to graph G incrementally by applying

transitions to the parser state: stack, buffer and constructed graph.

Initial state:
stack buffer
E ‘ You ‘ Want‘ to ‘ take ‘ a ‘ long‘ bath‘

TUPA transitions:
{SHIFT, REDUCE, NODEY, LEFT-EDGExX, RIGHT-EDGEX,
LEFT-REMOTEx, RIGHT-REMOTEY, SWAP, FINISH}

Support non-terminal nodes, and discontinuity.
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Example

= SHIFT

stack

@ [vor]

buffer

WWant‘to

‘take ‘a

\ long \ bath \

graph
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Example

= RIGHT-EDGE,h

stack

| @ |You

buffer

WWant‘to

‘take ‘a

\ long \ bath \

graph /

You
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Example

= SHIFT

stack

‘ o WYbu |\Nant|

buffer

‘to

‘take ‘a

\ long \ bath \

graph /'

You
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Example

= SWAP

stack

@ ]

buffer

|Ybu |to

‘take ‘a

\ long \ bath \

graph /'

You
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Example

= RIGHT-EDGEp

stack

@ [vant

buffer

‘You ’to

‘take ‘a

‘ long ‘ bath ‘

graph
P

You want
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Example

= REDUCE

stack buffer

@ ‘ to ‘ take ‘ a ‘ long ‘ bath ‘

graph
P

You want




Example

= SHIFT
stack buffer
@ [vor] to Jtake o [long | bath]

graph
P

You want
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Example

= SHIFT
stack buffer
‘ () ‘ You | to | ‘ take ‘ a ‘ long ‘ bath ‘

graph
P

You want
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Example

= NODEf
stack buffer
‘ () ‘ You ‘ to ‘ | o | take ‘ a ‘ long ‘ bath ‘

graph
//PT
You want
/

to
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Example

= REDUCE
stack buffer
@ Vo @ ke [0 [Toug | buih]

graph
//PT
You want
/

to
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Example

= SHIFT

stack

@ vu[@®]

buffer

‘take ‘a

\ long \ bath \

graph
//PT
You want
/

to
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Example

= SHIFT

stack

‘ () ‘You ‘ o |take|

buffer

a

\ long \ bath \

graph
//PT
You want
/

to
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Example

= NODE¢

stack

‘ () ‘You ‘ o ‘take‘

buffer

K HE

\ long \ bath \

graph
P

take

You want
F

to
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Example

= REDUCE

stack

@ You | @

buffer

@ |»

\ long \ bath \

graph
P

take

You want
F

to
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Example

= SHIFT

stack

@ Yu @[ @]

buffer

a

\ long \ bath \

graph
//PT
You want
/

to

take
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Example

= RIGHT-EDGEp

stack

@ vu [0 @]

buffer

a

\ long \ bath \

graph
//PT
You want
/\

to

C

take
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Example

= SHIFT

stack

@ Yu @ @ |0

buffer

graph

You

take
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Example

= RIGHT-EDGEF

stack

@ Yu @[ @ |n

buffer

graph

You

take
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Example

= REDUCE
stack buffer
@ Yu @ @
graph
p
You want

take

35



Example

= SHIFT

stack

‘.‘You‘.‘.|long|

buffer

graph

You

take

36



Example

= SWAP
stack buffer
@ vou | @ g (@ Jbutt
graph
P
You want

take
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Example

= RIGHT-EDGEp

stack buffer
@ [vou [@ [ione] @ [buth]
graph
P
You want

take
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Example

= REDUCE
stack buffer
@ [Yu @ @ [bath
graph

P

You want
D
to
take long
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Example

= SWAP
stack buffer
AR [ou] @ Dot
graph
P
You

take

long
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Example

= RIGHT-EDGE,h

stack buffer
eTe] Vou | @ Thaih
graph
P
You

take

long
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Example

= REDUCE
stack buffer
o You | @ Toatn
graph
P A
You want
D
to
take long




Example

= REDUCE

stack

H

buffer

‘You ‘ o ‘bath‘

graph

You

take

long
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Example

= SHIFT
stack buffer
You @ |bath
graph
P
You

take

long
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Example

= SHIFT
stack buffer
You [@
graph
P
You

take

long
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Example

= LEFT-REMOTE4

stack buffer
o[ @
graph
P
You want
K

take
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Example

= SHIFT

stack

‘You ‘ o |bath|

buffer

H

graph

take
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Example

= RIGHT-EDGE(¢

stack

‘You | o |bath|

buffer

graph

take

long

bath

H
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Example

= FINISH

stack

‘You ‘ o ‘bath‘

buffer

H

graph

bath
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Training

An oracle provides the transition sequence given the correct graph:

take a long bath

SHIFT, RIGHT-EDGE,, SHIFT, SWAP, RIGHT-EDGEp, REDUCE, SHIFT,
SHIFT, NODEF, REDUCE, SHIFT, SHIFT, NODE¢, REDUCE, SHIFT,
RIGHT-EDGEp, SHIFT, RIGHT-EDGEF, REDUCE, SHIFT, SWAP,
RIGHT-EDGEp, REDUCE, SWAP, RIGHT-EDGE4s, REDUCE, REDUCE, SHIFT,
SHIFT, LEFT-REMOTE4, SHIFT, RIGHT-EDGE¢, FINISH

50
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TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Features: words, POS, syntactic dependencies, existing edge labels
from the stack and buffer 4 parents, children, grandchildren;
ordinal features (height, number of parents and children)

stack buffer
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TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

You want to take long bath
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TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

You want to take long bath
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TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

LSTM LST™M LST™M LSTM LSTM LST™M

BinE w

You want to take long bath
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TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

want to tak



h
stack‘ o ‘You ‘ o ‘take‘ %? 5

You want f
F
to
buffer ‘ o ‘ a ‘ long ‘ bath ‘ /.

You want to take a long




Experiments
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Experimental Setup

train

dev
e UCCA Wikipedia corpus (4268 + 4§4 + 503 sentences).

test

e Out-of-domain: English part of English-French parallel corpus,
Twenty Thousand Leagues Under the Sea (506 sentences).
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Baselines
No existing UCCA parsers = conversion-based approximation.

Bilexical DAG parsers (allow ):
e DAGParser (Ribeyre et al., 2014): transition-based.

e TurboParser (Almeida and Martins, 2015): graph-based.

Tree parsers (all transition-based):
e MaltParser (Nivre et al., 2007): bilexical tree parser.
e Stack LSTM Parser (Dyer et al., 2015): bilexical tree parser.
e UPARSE (Maier, 2015): allows non-terminals, discontinuity.

2 G \\ @
; B— —0
|
|
bath

take a long

UCCA bilexical DAG approximation (for tree, delete remote edges).



Bilexical Graph Approximation

1. Convert UCCA to bilexical dependencies.
2. Train bilexical parsers and apply to test sentences.
3. Reconstruct UCCA graphs and compare with gold standard.

0 \J
After () J
T N

M

graduation  Joe moved
R C
o . L \ m Paris

After graduation moved to Paris
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Evaluation

Comparing graphs over the same sequence of tokens,
e Match edges by their terminal yield and label.
e Calculate labeled precision, recall and F1 scores.

e Separate primary and remote edges.

gold predicted

.
graduation
i

~

Joe

briar. _ LP LR LF Remote: . LP LR LF
MY TE_671% & = 60% 64% T 1=50% 1=100% 67%




Results
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TUPARg;LsTMm obtains the highest F-scores in all metrics:

Primary edges

Remote edges

LP LR LF LP LR LF
TUPAsparse 64.5 63.7 64.1 | 198 134 16
TUPAMLP 65.2 646 649 | 237 132 169
TUPAgiLsTm | 74.4 727 73.5 | 474 516 49.4
Bilexical DAG (91) (58.3)
DAGParser 61.8 558 5386 | 95 0.5 1
TurboParser | 57.7 46 51.2 | 77.8 1.8 3.7
Bilexical tree (91) -
MaltParser 62.8 57.7 60.2 - - -
Stack LSTM | 73.2 66.9 69.9 - - -
Tree (100) -
UPARSE 60.9 61.2 61.1 - - -

Results on the Wiki test set.



Results

Comparable on out-of-domain test set:

Primary edges

63

Remote edges

LP LR LF LP LR LF
TUPAsparse 506 59.9 598 | 222 7.7 115
TUPAMLP 62.3 626 625|209 6.3 9.7
TUPAgiLsTtm | 68.7 68.5 68.6 | 38.6 18.8 25.3
Bilexical DAG (91.3) (43.4)
DAGParser 56.4 50.6 534 - 0 0
TurboParser | 50.3 37.7 43.1 | 100 0.4 0.8
Bilexical tree (91.3) -
MaltParser 57.8 53 553 - - -
Stack LSTM | 66.1 61.1 63.5 - - -
Tree (100) -
UPARSE 52.7 52.8 52.8 - - -

Results on the 20K Leagues out-of-domain set.



Discussion
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Fine-Grained Analysis

100

Evaluation of TUPAg; sTMm per edge type:

65

100

center

connector

elaborator

linker

linked scene participant process
=P =R =LF

relator

function
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Online Demo

http://bit.ly/tupademo

Legend
Input text:
i i P process
This is a demo for TUPA, a transition-based UCCA parser.
S state
p A participant
H linked
scene
" c center
E elaborator
4
D adverbial
s R relator
< N connector
T v U punctuation
w O \& F function
G ground

o// /«u

i 3 3 3 3§ 3 2 382 2 3§ ¢ ER
5 5 5 5 5 5 5 5 5 5 5 5
This is a demo for TUPA atransition - basedUCCAparser


http://bit.ly/tupademo
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Error Analysis

Copular clauses tend to be parsed as identity.

Q

)

Y

g
3
5

S——_
— leuial <.\

©
eores >

e

2

= jeun.
- —jeuwa)

@
Q.
E
j=N
o

|
John years

But, from the guidelines?:

Johny [is,: [sixeyearsc]poldc] C} <

*http://www.cs.huji.ac.il/~oabend/ucca/guidelines.pdf


http://www.cs.huji.ac.il/~oabend/ucca/guidelines.pdf

Error Analysis

The participant category is used when adverbial should be.

SN
/NN

3 3 3 3 3
2 2 2 2 El
=1 =1 =1 =1 =1
@ @ @ @ @
| | | | |

Run like the wind
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Future Work
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Broad-Coverage UCCA Parsing

Already annotated in UCCA, but not yet handled by TUPA:
e Linkage: inter-scene relations (see example).
e Implicit units: units not mentioned at all in the text.

e [nter-sentence relations: discourse structure.
LA

LR link relation
LA  link argument

graduation Joe moved

to Paris

UCCA graph with a Linkage relation.
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AMR Parsing

Similar in structure and content, but poses several challenges:
e Node labels: not just edges, not also nodes are labeled.

e Partial alignment: orphan tokens, implicit concepts.

move-01

AMR graph.



AMR Parsing

Similar in structure and content, but poses several challenges:
e Node labels: not just edges, not also nodes are labeled.
e Partial alignment: orphan tokens, implicit concepts.

(T3
BulwI | U aweu

|eulua)

graduation ,  jonn Paris

moved to

AMR graph in UCCA-++ format.
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Semantic Dependency Parsing

Similar structure, but without non-terminal nodes.
By applying bilexical conversion in reverse, TUPA can be used.

top
ARG1 ARG2
ARG2 ARG1 ARG1 ARG2
After graduation , John moved to Paris

SDP graph (in the DM formalism).



Semantic Dependency Parsing

Similar structure, but without non-terminal nodes.
By applying bilexical conversion in reverse, TUPA can be used.

(o "oo¢

<~ A4
JRe, Y
N - \
~ \
%
(4
\\‘Q
\
\
\
\
Az
After graduation , John moved  to Paris

SDP graph in UCCA++ format.
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Conclusion

e UCCA's semantic distinctions require a graph structure
including non-terminals, and discontinuity.

e TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

e Qutperforms strong conversion-based baselines.

Code: github.com/danielhers/tupa
Demo: bit.ly/tupademo
Corpora: cs.huji.ac.il/~oabend/ucca.html


github.com/danielhers/tupa
bit.ly/tupademo
cs.huji.ac.il/~oabend/ucca.html

Conclusion

e UCCA's semantic distinctions require a graph structure
including non-terminals, and discontinuity.

e TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

e Qutperforms strong conversion-based baselines.
Future Work:

More languages (German corpus construction is underway).

Broad coverage UCCA parsing.
Parsing other schemes, such as AMR and SDP.
Text simplification, MT evaluation and other applications.

Code: github.com/danielhers/tupa
Demo: bit.ly/tupademo
Corpora: cs.huji.ac.il/~oabend/ucca.html

76


github.com/danielhers/tupa
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Conclusion

e UCCA's semantic distinctions require a graph structure
including non-terminals, and discontinuity.

e TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

e Qutperforms strong conversion-based baselines.
Future Work:

More languages (German corpus construction is underway).

Broad coverage UCCA parsing.
Parsing other schemes, such as AMR and SDP.
Text simplification, MT evaluation and other applications.

Code: github.com/danielhers/tupa
Demo: bit.ly/tupademo
Corpora: cs.huji.ac.il/~oabend/ucca.html

Thank you!


github.com/danielhers/tupa
bit.ly/tupademo
cs.huji.ac.il/~oabend/ucca.html
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UCCA Corpora

Wiki 20K
Train Dev Test Leagues
# passages 300 34 33 154
# sentences 4268 454 503 506
# nodes 298,993 33,704 35,718 | 29,315
% terminal 42,96 4354 4287 42.09

% non-term. 58.33 57.60 58.35 60.01
% discont. 0.54 0.53 0.44 0.81
% reentrant 2.38 1.88 2.15 2.03

# edges 287,914 32,460 34,336 | 27,749
% primary 98.25  98.75 98.74 97.73
% remote 1.75 1.25 1.26 2.27

Average per non-terminal node

# children 1.67 1.68 1.66 1.61

Corpus statistics.
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Evaluation

Mutual edges between predicted graph G, = (Vp, Ep, £,) and gold
graph Gg = (Vg, Eg,{g), both over terminals W = {w,..., w,}:

M(Gp. Gg) = {(e1,e2) € EpxEg | y(er) = y(e2)Alpler) = lg(e2) |

The yield y(e) C W of an edge e = (u, v) in either graph is the set
of terminals in W that are descendants of v. /7 is the edge label.

Labeled precision, recall and F-score are then defined as:

L Mo Gl MGy Gp)l
|Epl | Eg|
2.LP-LR
F=Tri R

Two variants: one for primary edges, and another for remote edges.



	Introduction
	The UCCA Semantic Representation Scheme
	Transition-based UCCA Parsing
	Experiments
	Discussion
	Future Work
	Backup

