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Grounded Representation

Civen a sequence of tokensw =w,, ..., w |
A (labeled) directed graph (V, E) where {w} S Vis a

grounded representation of w.

Examples:

Dependency/constituency trees, UCCA... 4



Why Semantic Representation?

Syntactic representation is sensitive to formal variations.
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Universal Conceptual Cognitive Annotation (UCCA)
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Structural Properties

Properties required for full semantic coverage in grounded representations:

—
.

Multiple parents (DAG).
2. Non-projectivity (discontinuity).

3. Non-terminal nodes.
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Broad-Coverage Parsing

e Non-projective dependency parsing m

e Discontinuous constituency parsing X
« o

e Semantic dependency parsing (SDP)

AN
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Why Non-Terminals?

Some frequent constructions do not have one clear head,

e.g. coordination, some multi-word expressions, compounds.
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Structural Properties in UCCA

After

graduation John

moved

o | 4

went

home

H parallel scene
A participant

P process
G ground

D adverbial
E elaborator
S state
L linker

N connector
R relator

C center

F function

gave everything

up
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Non-Terminal Units

Coordination represented by one parent node

went home
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Multiple Parents

After

graduation John  moved

to Paris

---> Remote edges denote implicit relations
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Discontinuous Units

Multi-word expression

annotated as one unit

gave everything up
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Corpus Statistics
7// . X

160K tokens from English Wikipedia

+25K tokens from Twenty Thousand

Leagues Under the Sea

Train Test
# passages 281 35 43
# sentences 4021 537 608 522
# nodes 277,587 40,700 45,047 | 29,965
% terminal 42.41 42.8 42.66 41.23
%0 non-term. 57.59 57.20 57.34 58.77
% discont. 0.52 0.55 0.47 0.79
% >1 parent 2.29 1.89 2.21 1.98
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Outline

e Conversion-Based Parsing
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Transition-Based Dependency Parsing

B:
graduati
S B

initialized to the list of tokens.
S:

Stack of partially processed

nodes, initially just the root.
/\ G:

After graduation , John moved to Paris .

G

Graph of constructed edges.




Transition-Based Dependency Parsing

Classifier selects next transition given current state

gradua
SR
S B Reduce
Right-Edge

/\ Left-Edge

After graduation , John moved to Paris .

G Swap
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Transition-Based Constituency Parsing

Transitions to create new nodes

gradua
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After graduation , John moved to Paris .

G Swap
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Conversions

1. Convert UCCA to dependency and constituency trees.
2. Apply existing transition-based parsers.

3. Convert back to UCCA.

Dependency parsers:
MaltParser (Nivre 2003), Stack-LSTM Parser (Dyer et al. 2015)
Constituency parser:

UPARSE (Maier 2015): discontinuous constituency parser
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Scores on the Wiki test set:

Primary Remote
LP LR LF | LP LR LF

Constituency Tree Conversion

UPARSE 64 673 654 | — 0 0
Upper Bound | 100 100 100 | — 0 0
Dependency Tree Conversion

Malt, o ciandard’ | ©34 5L3 601 = 0 0
Maltyecager | 63.9 579 605 — 0 0
LSTM 732 662 69.2 | — 0 0
Upper Bound | 93.8 83.7 884 | — 0 0

Upper bound is due to lossy conversion algorithms. 20



Classifiers

e MaltParser: perceptron/SVM
e UPARSE: perceptron

e Stack-LSTM parser: recurrent neural network

+ continuous features
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Outline

e Broad-Coverage Semantic Parsing
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BSP: Broad-Coverage Semantic Parser

Discontinuous DAG parser
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23



Scores on the Wiki test set and the 20K leagues set:

Primary Remote
LP LR LF | LP LR LF
BSP 624 56 39 | 155 118 133
BSPTree 63.8 565 599 | — 0 0
Out-of-domain
BSP 60.6 539 57.1 202 103 13.6
BSPTyee 60.2 528 562 | - 0 0

(BSP_ __trained on converted trees without remote edges)
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Conclusion

e The structural desiderata of grounded semantic parsing is
not supported by today’s parsers

e \We present a transition-based system that does

e Encouraging results with UCCA suggest that NN-based

classification may be helpful for better performance
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Future Work

e Neural network for BSP classifier
® Improved conversions
® Beam search

e More languages, e.g. German
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