Universal Semantic Parsing with Neural Networks

Daniel Hershcovich Joint work with Ari Rappoport and Omri Abend

June 11, 2019

Daniel Hershcovich

June 11, 2019 1 / 46

Daniel Hershcovich

June 11, 2019 2 / 46

< 古ど

Machine translation:

Sequence-to-sequence sometimes works, but lacks inductive bias.

Linguistic Structured Representations

Model explicit relations between words or concepts.

Example: syntactic/semantic bi-lexical dependencies.

Semantic Representations

Abstract away from detail that does not affect meaning:

rest \approx take a break

$$[
m graduation] pprox \boxed{} = \boxed{}$$
סיים את הלימודים

Semantic Representations

Outline

Background: The UCCA Semantic Representation Scheme

- 2 A Transition-Based DAG Parser for UCCA (ACL'17)
- 3 Multitask Parsing across Semantic Representations (ACL'18)
- 4 Cross-lingual Semantic Parsing with UCCA (SemEval'19)
- 5 Content Differences in Syntactic and Semantic Representations (NAACL'19)
- Ongoing Work

Background: The UCCA Semantic Representation Scheme

Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena. [Abend and Rappoport, 2013]

Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena. Cross-linguistically applicable and stable [Sulem et al., 2015].

Universal Conceptual Cognitive Annotation (UCCA)

Supports rapid and intuitive annotation of linguistic semantic phenomena. Cross-linguistically applicable and stable [Sulem et al., 2015].

UCCA Applications

Semantics-based evaluation of

- Machine translation [Birch et al., 2016].
- Text simplification [Sulem et al., 2018a].
- Grammatical error correction [Choshen and Abend, 2018].

UCCA Applications

Semantics-based evaluation of

- Machine translation [Birch et al., 2016].
- Text simplification [Sulem et al., 2018a].
- Grammatical error correction [Choshen and Abend, 2018].

Sentence splitting for text simplification [Sulem et al., 2018b].

Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges. Text tokens are terminals, complex units are non-terminal nodes.

Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges. Text tokens are terminals, complex units are non-terminal nodes. Phrases may be discontinuous.

Graph Structure

UCCA structures are directed acyclic graphs (DAGs) with labeled edges. Text tokens are terminals, complex units are non-terminal nodes. Phrases may be **discontinuous**. *Remote edges* enable reentrancy.

Structural Properties

UCCA Data

- English Wikipedia articles (Wiki).
- English-French-German parallel corpus from *Twenty Thousand Leagues Under the Sea* (20K).
- Reviews from the English Web Treebank (EWT).

Data Statistics

	Wiki		EWT		
	en	en	fr	de	en
# sentences	5,141	492	492	6,514	3,520
# tokens	158,739	12,638	13,021	144,529	51,042
# non-terminal nodes	62,002	4,699	5,110	51,934	18,156
% discontinuous	1.71	3.19	4.64	8.87	3.87
% reentrant	1.84	0.89	0.65	0.31	0.83
# edges	208,937	16,803	17,520	187,533	60,739
% primary	97.40	96.79	97.02	97.32	97.32
% remote	2.60	3.21	2.98	2.68	2.68

Outline

Background: The UCCA Semantic Representation Scheme

- 2 A Transition-Based DAG Parser for UCCA (ACL'17)
 - 3 Multitask Parsing across Semantic Representations (ACL'18)
- 4 Cross-lingual Semantic Parsing with UCCA (SemEval'19)
- Content Differences in Syntactic and Semantic Representations (NAACL'19)
- 6 Ongoing Work

Parses text $w_1 \ldots w_n$ to graph G incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph.

Parses text $w_1 \ldots w_n$ to graph G incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph.

Initial state:

stack							buffer
	They	thought	about	taking	a	short	break

Parses text $w_1 \ldots w_n$ to graph G incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph.

Initial state:

stack							buffer
	They	thought	about	taking	a	short	break

TUPA transitions: {SHIFT, REDUCE, NODE_X, LEFT-EDGE_X, RIGHT-EDGE_X, LEFT-REMOTE_X, RIGHT-REMOTE_X, SWAP, FINISH}

These transitions enable non-terminal nodes, reentrancy and discontinuity.

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

\Rightarrow Right-Edge_A

Daniel Hershcovich

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

 \Rightarrow Swap

Example: TUPA Transition Sequence

\Rightarrow Right-Edge_P

Daniel Hershcovich

Example: TUPA Transition Sequence

 \Rightarrow Reduce

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

 $\Rightarrow \text{NODE}_R$

Example: TUPA Transition Sequence

 \Rightarrow Reduce

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

$\Rightarrow \text{Left-Remote}_{\mathcal{A}}$

Daniel Hershcovich

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

 $\Rightarrow \text{NODE}_{C}$

Example: TUPA Transition Sequence

 \Rightarrow Reduce

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

\Rightarrow Right-Edge_P

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

\Rightarrow Right-Edge_F

Example: TUPA Transition Sequence

 \Rightarrow Reduce

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

 \Rightarrow Swap

Example: TUPA Transition Sequence

\Rightarrow Right-Edge_D

Example: TUPA Transition Sequence

 \Rightarrow Reduce

Example: TUPA Transition Sequence

 \Rightarrow Swap

Example: TUPA Transition Sequence

 \Rightarrow Right-Edge_A

Example: TUPA Transition Sequence

 \Rightarrow Reduce

Example: TUPA Transition Sequence

 \Rightarrow Reduce

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

 \Rightarrow Reduce

Example: TUPA Transition Sequence

 \Rightarrow Shift

Example: TUPA Transition Sequence

\Rightarrow RIGHT-EDGE_C

Example: TUPA Transition Sequence

 \Rightarrow Finish

Training

An *oracle* provides the transition sequence given the correct graph:

SHIFT, RIGHT-EDGE_A, SHIFT, SWAP, RIGHT-EDGE_P, REDUCE, SHIFT, SHIFT, NODE_R, REDUCE, LEFT-REMOTE_A, SHIFT, SHIFT, NODE_C, REDUCE, SHIFT, RIGHT-EDGE_P, SHIFT, RIGHT-EDGE_F, REDUCE, SHIFT, SWAP, RIGHT-EDGE_D, REDUCE, SWAP, RIGHT-EDGE_A, REDUCE, REDUCE, SHIFT, REDUCE, SHIFT, RIGHT-EDGE_C, FINISH

Learns to greedily predict transition based on current state. Experimenting with three classifiers:

SparsePerceptron with sparse features.MLPWord embeddings + MLP.BiLSTMWord embeddings + bidirectional RNN + MLP.

Features include:

{words, parts of speech, syntactic dependencies, existing edge labels} from the stack and buffer + parents, children, grandchildren.

- **Sparse** Perceptron with sparse features.
- **MLP** Word embeddings + MLP.
- **BiLSTM** Word embeddings + **bidirectional RNN** + MLP.

- **Sparse** Perceptron with sparse features.
- **MLP** Word embeddings + MLP.
- **BiLSTM** Word embeddings + **bidirectional RNN** + MLP.

- **Sparse** Perceptron with sparse features.
- **MLP** Word embeddings + MLP.
- **BiLSTM** Word embeddings + **bidirectional RNN** + MLP.

- **Sparse** Perceptron with sparse features.
- **MLP** Word embeddings + MLP.
- **BiLSTM** Word embeddings + **bidirectional RNN** + MLP.

Comparing to Existing Methods

Using conversion-based approximation as baseline, with bi-lexical DAG parsers and transition-based tree parsers.

UCCA bi-lexical DAG approximation.

Bi-lexical Graph Approximation

Evaluation

- In the second second
- ② Calculate precision, recall and F1 scores.
- 8 Repeat for remote edges.

Evaluation

- Match primary edges between the graphs by terminal yield and label.
- Calculate **precision**, recall and **F1** scores. 2
- Repeat for remote edges. 3

PrimaryRemotePRF1
$$\frac{6}{9} = 67\%$$
 $\frac{6}{10} = 60\%$ 64% Daniel HershcovichJune 11, 201920/46

June 11, 2019

Results

 $TUPA_{BiLSTM}$ outperforms all other methods on the English Wiki test set:

	English Wiki			
	Primary	Remote		
	F1	F1		
TUPA				
Sparse	64.1	16		
MLP	64.9	16.9		
BiLSTM	73.2	46.8		
Baselines				
DAGParser	58.6	1		
TurboParser	51.2	3.7		
MaltParser	60.2			
StackLSTM	69.9			
UPARSE	61.1			

(日)

Results

...and also on the out-of-domain English 20K:

	Englis	h Wiki	English 20K		
	Primary	Remote	Primary	Remote	
	F1	F1	F1	F1	
TUPA					
Sparse	64.1	16	59.8	11.5	
MLP	64.9	16.9	62.5	9.7	
BiLSTM	73.2	46.8	67.9	23.0	
Baselines					
DAGParser	58.6	1	53.4		
TurboParser	51.2	3.7	43.1	0.8	
MaltParser	60.2		55.3		
StackLSTM	69.9		63.5		
UPARSE	61.1		52.8		

Results

	Englis	glish Wiki English 20		h 20K	French 20K		German 20K	
	Primary	Remote	Primary	Remote	Primary	Remote	Primary	Remote
	F1	F1	F1	F1	F1	F1	F1	F1
TUPA								
Sparse	64.1	16	59.8	11.5				
MLP	64.9	16.9	62.5	9.7				
BiLSTM	73.2	46.8	67.9	23.0	44.0	3.8	73.9	47.2
Baselines								
DAGParser	58.6	1	53.4					
TurboParser	51.2	3.7	43.1	0.8				
MaltParser	60.2		55.3					
StackLSTM	69.9		63.5					
UPARSE	61.1		52.8					
うつ 山 (山) (山) (山) (山) (山) (山) (山) (山) (山) (
Interim Summary

- Structured meaning representation benefits language understanding.
- UCCA's semantic distinctions require a graph structure including non-terminals, reentrancy and discontinuity.
- TUPA is an accurate transition-based UCCA parser, and the first to support UCCA and any DAG over the text tokens.
- Outperforms strong conversion-based baselines.

Interim Summary

- Structured meaning representation benefits language understanding.
- UCCA's semantic distinctions require a graph structure including non-terminals, reentrancy and discontinuity.
- TUPA is an accurate transition-based UCCA parser, and the first to support UCCA and any DAG over the text tokens.
- Outperforms strong conversion-based baselines.

Up next:

- Parsing other semantic representations.
- Comparing representations through conversion.

Outline

D Background: The UCCA Semantic Representation Scheme

- 2 A Transition-Based DAG Parser for UCCA (ACL'17)
- 3 Multitask Parsing across Semantic Representations (ACL'18)
- 4 Cross-lingual Semantic Parsing with UCCA (SemEval'19)
- 5 Content Differences in Syntactic and Semantic Representations (NAACL'19)
- 6 Ongoing Work

Multitask Parsing across Semantic Representations (ACL'18)

Syntactic Representations

UD (Universal Dependencies)

Data

UCCA training data is scarce

Data

UCCA training data is scarce

Conversion

Multitask

Image: A mathematical states and a mathem

Multitask

Results

F	Primary F1	Remote F1								
English Wiki (in-domain)										
Single-task	73.2	46.8								
+AMR	72.7	52.7								
+DM	74.0	53.8								
+UD	72.2	48.0								
+AMR+DM	73.6	48.5								
+AMR+UD	73.3	51.2								
+DM+UD	73.9	52.2								
All	73.8	52.1								

メロト メロト メヨトメ

Results

	Primary F1	Remote F1		Primary F1						
English Wil	ki (in-domai	in)	English 20K	English 20K (out-of-domain)						
Single-task	73.2	46.8	Single-task	67.9	23.0					
+AMR	72.7	52.7	+AMR	67.0	31.2					
+DM	74.0	53.8	+DM	69.1	27.5					
+UD	72.2	48.0	+UD	67.4	23.9					
+AMR+DM	73.6	48.5	+AMR+DM	68.9	25.4					
+AMR+UD	73.3	51.2	+AMR+UD	68.2	31.4					
+DM+UD	73.9	52.2	+DM+UD	68.6	29.1					
All	73.8	52.1	All	69.1	25.8					

イロト イヨト イヨト イ

Results

	Primary F1	Remote F1		Primary F1 Remote						
English Wil	ki (in-domai	in)	English 20K	English 20K (out-of-domain)						
Single-task	73.2	46.8	Single-task	67.9	23.0					
+AMR	72.7	52.7	+AMR	67.0	31.2					
+DM	74.0	53.8	+DM	69.1	27.5					
+UD	72.2	48.0	+UD	67.4	23.9					
+AMR+DM	73.6	48.5	+AMR+DM	68.9	25.4					
+AMR+UD	73.3	51.2	+AMR+UD	68.2	31.4					
+DM+UD	73.9	52.2	+DM+UD	68.6	29.1					
All	73.8	52.1	All	69.1	25.8					

	Remote F1								
French 20K (in-domain)									
Single-task	44.0	3.8							
+UD	49.6	1.6							
German 20K (in-domain)									
Single-task	73.9	47.2							
+UD	80.1	59.8							

イロト イヨト イヨト イ

Outline

D Background: The UCCA Semantic Representation Scheme

- 2 A Transition-Based DAG Parser for UCCA (ACL'17)
- 3 Multitask Parsing across Semantic Representations (ACL'18)

Cross-lingual Semantic Parsing with UCCA (SemEval'19)

5 Content Differences in Syntactic and Semantic Representations (NAACL'19)

Ongoing Work

Shared Task

• Data: English Wiki, English-French-German 20K

	sentences	tokens
English-Wiki	5,142	158,573
English-20K	492	12,574
French-20K	492	12,954
German-20K	6,514	144,531

Tracks:

- English {in-domain/out-of-domain} \times {open/closed}
- German in-domain {open/closed}
- French low-resource (only 15 training sentences)
- Baseline: TUPA
- Evaluation period: January 10-31, 2019

Participating Systems

8 groups in total:

- MaskParse@Deskiñ Orange Labs, Aix-Marseille University
- HLT@SUDA Soochow University
- TüPa University of Tübingen
- UC Davis University of California, Davis
- GCN-Sem University of Wolverhampton
- *CUNY-PekingU* City University of New York, Peking University
- DANGNT@UIT.VNU-HCM University of Information Technology VNU-HCM
- XLangMo Zhejiang University

-

• • • • • • • • • • • •

Main Findings

• HLT@SUDA won 6/7 tracks:

Neural constituency parser + multi-task + BERT French: trained on all languages, with language embedding

Main Findings

- HLT@SUDA won 6/7 tracks: Neural constituency parser + multi-task + BERT French: trained on all languages, with language embedding
- CUNY-PekingU won the French (open) track: TUPA ensemble + synthetic data by machine translation

Main Findings

- HLT@SUDA won 6/7 tracks: Neural constituency parser + multi-task + BERT French: trained on all languages, with language embedding
- CUNY-PekingU won the French (open) track: TUPA ensemble + synthetic data by machine translation

Surprisingly, results in French were close to English and German

- Demonstrates viability of cross-lingual UCCA parsing
- Is this because of UCCA's stability in translation?

Outline

D Background: The UCCA Semantic Representation Scheme

2 A Transition-Based DAG Parser for UCCA (ACL'17)

3 Multitask Parsing across Semantic Representations (ACL'18)

4 Cross-lingual Semantic Parsing with UCCA (SemEval'19)

5 Content Differences in Syntactic and Semantic Representations (NAACL'19)

Ongoing Work

UCCA vs. UD

Semantic representation: **UCCA** JU н After Ρ Ρ graduation John moved R Syntactic representation: ÚD obl root to Copenhagen obl nsubj case punct case After graduation Copenhagen John moved to•

(NAACL'19) UCCA vs. UD

Semantic representation: **UCCA** U. н After Ρ Ρ Many formal differences. graduation John moved R Syntactic representation: ŮD obl root Copenhagen to obl nsubj case punct case After graduation Copenhagen John moved to•

UCCA vs. UD

Assimilating the Graph Structures

Image: A matrix and a matrix

Assimilating the Graph Structures

Now we can evaluate by matching edges (UCCA unlabeled evaluation)

Assimilating the Graph Structures

Assimilating the Graph Structures

Confusion Matrix

																	NO
	Α	AP	AS	С	D	Е	F	G	н	L	Ν	Р	Q	R	S	т	Match
acl	58			1	4	249	1		48			6			1	1	409
advcl	14			12	2	2		6	512	4		11					423
advmod	225		1	69	1778	332	27	135	14	258	2	2	15	44	9	368	273
amod	25			134	647	837		1	28			7	130	3	269	25	176
appos	21			39	2	34			18						8		33
aux					384	2	1335			2		1		1			17
case	11			31	27	25	123			213	26	11	1	2629	154	1	262
сс				8	4	1	4	1	1	1567	381		6	12			52
ccomp	345			1		1			36			2			1	1	166
compound	225			116	67	586	21		2			32	19	1	12	24	683
conj	10			449	4	5		1	1262	1		6	2		10		497
cop				1			1312			1		9		10	178		7
csūbj	13								3								46
det	10			17	119	440	2963				1		129	16	1		124
discourse	1			2	1		25	29	27	16					5		19
expl	21			1			98								17		3
iobj	131			1			1										10
list	3			7	2	1			27						1		6
mark				9	7	_1	531	1		654				407	1	5	143
nmod	844	1	1	20	9	786	8	4	12	1	1	20	2	2	11	27	488
nsubj	4296	7	21	25	3	2	55	1	5	61		58	1	80	14	4	247
nummod	2			33	12	17		4		4			334		-		64
obj	1845		1	54	21	6	11	1	4	23		52	1	23	3	11	583
obl	1195			19	115	41	1	17	39	34		6	6	26	7	302	611
parataxis	6		1	5		4		6	285						3		180
vocative	17				~-			8							~ ~		
xcomp	121			4	25				8			38			38		526
head	445	48	159	6388	717	142	564	83	2462	42	1	4163	120	52	1547	32	2235
No Match	1421	37	58	640	417	291	14	33	2291	146	6	802	94	52	369	96	

・ロト ・日下・ ・ 日下・

Scenes and non-Scenes, Relations and Participants

Scenes and non-Scenes, Relations and Participants

Scenes and non-Scenes, Relations and Participants

Multi-word Expressions

Multi-word Expressions

Multi-word Expressions

Linkage between Scenes

< A[™]

Linkage between Scenes

< A[™]

Outline

D Background: The UCCA Semantic Representation Scheme

- 2 A Transition-Based DAG Parser for UCCA (ACL'17)
- 3 Multitask Parsing across Semantic Representations (ACL'18)
- 4 Cross-lingual Semantic Parsing with UCCA (SemEval'19)
- 5 Content Differences in Syntactic and Semantic Representations (NAACL'19)
- 6 Ongoing Work

Ongoing Work

UCCA in Terms of Syntax and Lexical Semantics

Complement syntax with *lexical* semantics to make up for differences.

• Meaning representation is valuable for language understanding.

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Multitask learning allows useful shared generalizations to emerge.

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Multitask learning allows useful shared generalizations to emerge.
- Divergences limit inter-scheme gain, but highlight relative strengths.

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Multitask learning allows useful shared generalizations to emerge.
- Divergences limit inter-scheme gain, but highlight relative strengths.

- Meaning representation is valuable for language understanding.
- TUPA, an accurate UCCA parser, is suited to many representations.
- Multitask learning allows useful shared generalizations to emerge.
- Divergences limit inter-scheme gain, but highlight relative strengths.

CoNLL 2019 Shared Task: Cross-Framework Meaning Representation Parsing SDP, EDS, AMR and UCCA mrp.nlpl.eu

Evaluation Period: July 8-22, 2019

References I

Abend, O. and Rappoport, A. (2013).

```
Universal Conceptual Cognitive Annotation (UCCA). In Proc. of ACL, pages 228–238.
```


Birch, A., Abend, O., Bojar, O., and Haddow, B. (2016).

HUME: Human UCCA-based evaluation of machine translation. In *Proc. of EMNLP*, pages 1264–1274.

Choshen, L. and Abend, O. (2018).

Reference-less measure of faithfulness for grammatical error correction. In *Proc. of NAACL-HLT*.

Sulem, E., Abend, O., and Rappoport, A. (2015).

Conceptual annotations preserve structure across translations: A French-English case study. In Proc. of S2MT, pages 11–22.

Sulem, E., Abend, O., and Rappoport, A. (2018a).

Semantic structural annotation for text simplification. In *Proc. of NAACL*.

Sulem, E., Abend, O., and Rappoport, A. (2018b).

Simple and effective text simplification using semantic and neural methods. In Proc. of ACL.