Meaning Representation and Parsing

Daniel Hershcovich

DIKU Bits February 18, 2020

Daniel Hershcovich

DIKU Bits February 18, 2020 1 / 23

2005–2010 **B.Sc. in Mathematics and Computer Science**, The Open University of Israel

2005–2010 **B.Sc. in Mathematics and Computer Science**, The Open University of Israel

2008–2019 **Software Engineer** IBM Research

2005–2010 **B.Sc. in Mathematics and Computer Science**, The Open University of Israel

2008–2019 Software Engineer IBM Research

2012–2019 **Ph.D. in Computational Neuroscience** The Hebrew University of Jerusalem

Short Introduction

2005-2010 The Open University of Israel

2008-2019 IBM Research

2012-2019 The Hebrew University of Jerusalem

Since 2019 University of Copenhagen

IBM Project Debater (2012–2019)

Al system that can debate humans on complex topics (e.g., **We should ban the sale of violent video games**)

5 research papers, e.g.,

Context Dependent Claim Detection (2014)

Argument Invention from First Principles (2019)

IBM Project Debater (2012–2019)

Al system that can debate humans on complex topics (e.g., **We should ban the sale of violent video games**)

Because violence in video games is interactive and not passive, critics such as Dave Grossman and Jack Thompson argue that **violence in games hardens children to unethical acts**, calling first-person shooter games "murder simulators", although no conclusive evidence has supported this belief

5 research papers, e.g.,

Context Dependent Claim Detection (2014)

Argument Invention from First Principles (2019)

IBM Project Debater (2012–2019)

Al system that can debate humans on complex topics (e.g., **We should ban the sale of violent video games**)

Freedom of choice \rightarrow People have the right to make their own choices, including bad ones

Black market \rightarrow Prohibition is counterproductive and only leads to increased demand

5 research papers, e.g.,

Context Dependent Claim Detection (2014)

Argument Invention from First Principles (2019)

Translate:

Dave Grossman and Jack Thompson argue that violent games are harmful

Dave Grossman og Jack Thompson hævder, at voldsomme spil er skadelige

Recognize entities:

Dave Grossman and Jack Thompson argue that violent games are harmful

Infer:

Violence in games hardens children to unethical acts \downarrow entails Violent games are harmful

(4) (5) (4) (5)

Translate:

Dave Grossman and Jack Thompson argue that violent games are harmful

Dave Grossman og Jack Thompson hævder, at voldsomme spil er skadelige

Recognize entities:

Dave Grossman and Jack Thompson argue that violent games are harmful

Infer:

Violence in games hardens children to unethical acts \downarrow entails Violent games are harmful

• • = • • = •

Translate:

Dave Grossman and Jack Thompson argue that violent games are harmful

Dave Grossman og Jack Thompson hævder, at voldsomme spil er skadelige

Recognize entities:

Dave Grossman and Jack Thompson argue that violent games are harmful

Infer:

Violence in games hardens children to unethical acts ↓ entails Violent games are harmful

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

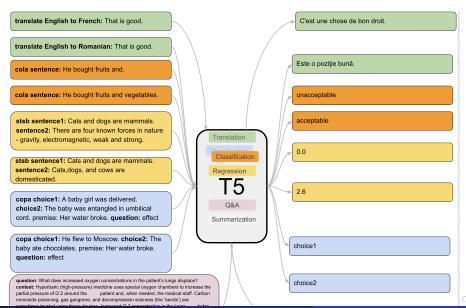
Translate:

Dave Grossman and Jack Thompson argue that violent games are harmful

Dave Grossman og Jack Thompson hævder, at voldsomme spil er skadelige

Recognize entities:

Dave Grossman and Jack Thompson argue that violent games are harmful


Infer:

Violence in games hardens children to unethical acts

 \downarrow entails

Violent games are harmful

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Daniel Hershcovich

1. Pre-train representations:

$$\Sigma^* \to \mathbb{R}^n$$

2. Train classifiers:

$$\mathbb{R}^n o Y$$

3. Deploy:

$$\Sigma^* o Y$$

Violence in games hardens children to unethical acts ? Violent games are harmful

1. Pre-train representations:

$$\Sigma^* \to \mathbb{R}^n$$

2. Train classifiers:

$$\mathbb{R}^n \to Y$$

3. Deploy:

$$\Sigma^* o Y$$

Violence in games hardens children to unethical acts ? Violent games are harmful

1. Pre-train representations:

$$\Sigma^* \to \mathbb{R}^n$$

2. Train classifiers:

$$\mathbb{R}^n \to Y$$

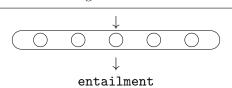
3. Deploy:

$$\Sigma^* \to Y$$

Violence in games hardens children to unethical acts ? Violent games are harmful

1. Pre-train representations:

$$\Sigma^* \to \mathbb{R}^n$$


2. Train classifiers:

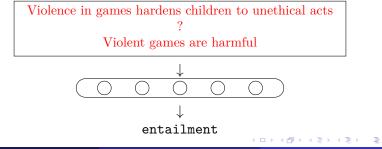
$$\mathbb{R}^n \to Y$$

3. Deploy:

$$\Sigma^* \to Y$$

Violence in games hardens children to unethical acts ? Violent games are harmful

1. Pre-train representations:


$$\Sigma^* \to \mathbb{R}^n$$

2. Train classifiers:

$$\mathbb{R}^n \to Y$$

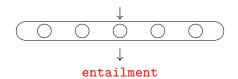
3. Deploy:

$$\Sigma^* \to Y$$

1. Pre-train *representations*:

$$\Sigma^* \to \mathbb{R}^n$$

2. Train classifiers:


$$\mathbb{R}^n o \mathbf{Y}$$

3. Deploy:

$$\Sigma^* \to \textbf{Y}$$

Violence in games hardens children to unethical acts

Violent games are harmful

1. Pre-train *representations*:

$$\Sigma^* \to \mathbb{R}^n$$

2. Train classifiers:

$$\mathbb{R}^n o Y$$

3. Deploy:

$$\Sigma^* \to Y$$

Violence in games hardens children to unethical acts ? Violent games are harmful

$$\begin{array}{c|c} & \downarrow \\ \hline & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ & \downarrow \\ & \text{entailment} \end{array}$$

1. Pre-train representations:

$$\Sigma^* \to \mathbb{R}^n$$

2. Train classifiers:

$$\mathbb{R}^n o Y$$

3. Deploy:

$$\Sigma^* \to Y$$

Violence in games hardens children to unethical acts ? Violent games are harmful

Representation = vector of real numbers?

entailment

Daniel Hershcovich

Which Sesame Street ? is your favorite

Which ? Street character is your favorite

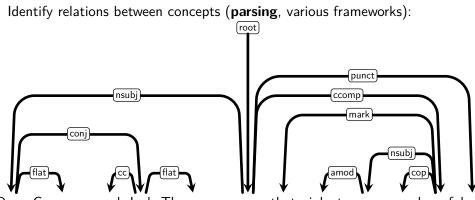
Which Sesame ? character is your favorite

? Sesame Street character is your favorite

Which Sesame Street character ? your favorite

Which Sesame Street character is ? favorite

Which Sesame Street character is your ?


Which Sesame Street character is your favorite

BERT (Bidirectional Encoder Representations from Transformers):

- Trained on 16GB of text.
- 16 TPU chips for 4 days.

https://demo.allennlp.org/masked-lm

Dave Grossman and Jack Thompson argue that violent games are harmful .

[Meaning], [Representation] and [Parsing]

1. What we mean, 2. How to represent (something), 3. How to parse (something)

or

[Meaning Representation] and [Parsing] 1. How to represent what we mean, 2. How to parse (something)

or

[Meaning [Representation and Parsing]] 1. How to represent what we mean, 2. How to parse what we mean

or

[Meaning Representation] and [Parsing *(to Meaning Representation)*] 1. How to represent what we mean, 2. How to parse (1)

< ロ > < 同 > < 回 > < 回 >

[Meaning], [Representation] and [Parsing]

1. What we mean, 2. How to represent (something), 3. How to parse (something)

or

[Meaning Representation] and [Parsing] 1. How to represent what we mean, 2. How to parse (something)

or

[Meaning [Representation and Parsing]] 1. How to represent what we mean, 2. How to parse what we mean

or

[Meaning Representation] and [Parsing *(to Meaning Representation)*] 1. How to represent what we mean, 2. How to parse (1)

< ロ > < 同 > < 回 > < 回 >

[Meaning], [Representation] and [Parsing]

1. What we mean, 2. How to represent (something), 3. How to parse (something)

or

[Meaning Representation] and [Parsing] 1. How to represent what we mean, 2. How to parse (something)

or

[Meaning [Representation and Parsing]] 1. How to represent what we mean, 2. How to parse what we mean

or

[Meaning Representation] and [Parsing *(to Meaning Representation)*] 1. How to represent what we mean, 2. How to parse (1)

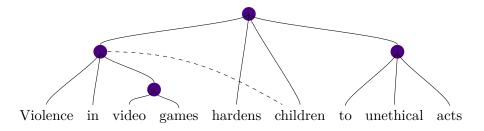
▲ □ ▶ ▲ □ ▶ ▲ □ ▶

[Meaning], [Representation] and [Parsing]

1. What we mean, 2. How to represent (something), 3. How to parse (something)

or

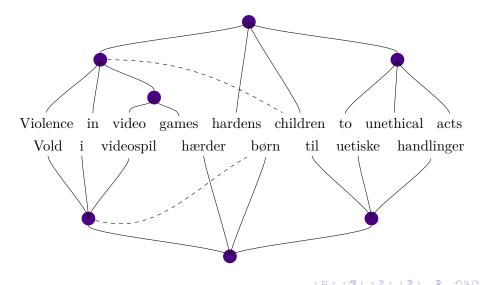
[Meaning Representation] and [Parsing] 1. How to represent what we mean, 2. How to parse (something)

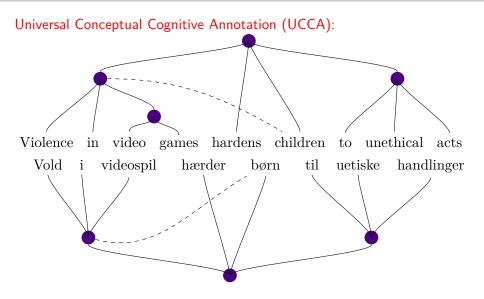

or

[Meaning [Representation and Parsing]] 1. How to represent what we mean, 2. How to parse what we mean

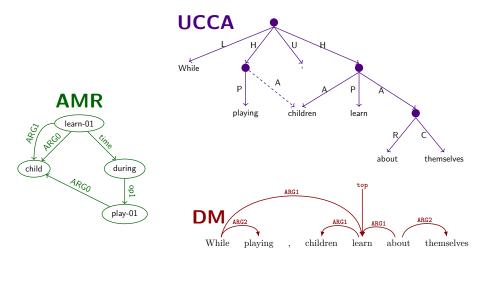
or

[Meaning Representation] and [Parsing *(to Meaning Representation)*] 1. How to represent what we mean, 2. How to parse (1)


Graphs


< 47 ▶

æ


Graphs

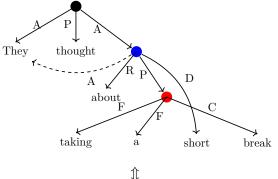
Graphs

Many meaning representation frameworks exist

DIKU Bits February 18, 2020 11 / 23

4 3 > 4 3

Parsing


A Transition-Based Directed Acyclic Graph Parser for UCCA (2017) http://bit.ly/tupademo

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Parsing

A Transition-Based Directed Acyclic Graph Parser for UCCA (2017) http://bit.ly/tupademo

SHIFT, RIGHT-EDGE_A, SHIFT, SWAP, RIGHT-EDGE_P, REDUCE, SHIFT, SHIFT, NODE_R, REDUCE, LEFT-REMOTE_A, SHIFT, SHIFT, NODE_C, REDUCE, SHIFT, RIGHT-EDGE_P, SHIFT, RIGHT-EDGE_F, REDUCE, SHIFT, SWAP, RIGHT-EDGE_D, REDUCE, SWAP, RIGHT-EDGE_A, REDUCE, REDUCE, SHIFT, REDUCE, SHIFT, RIGHT-EDGE_C, FINISH

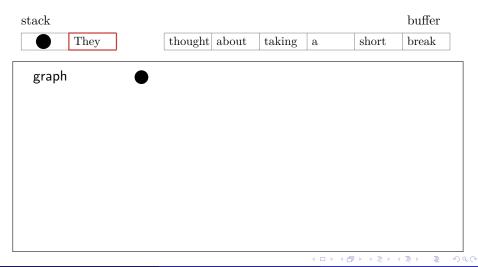
TUPA: Transition-based UCCA Parser

Parses text $w_1 \dots w_n$ to graph G incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph.

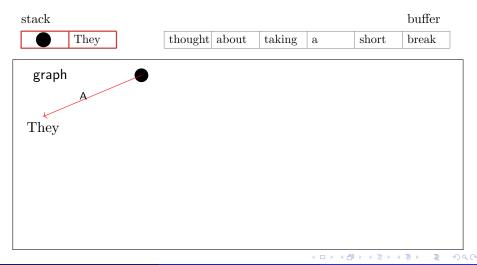
TUPA: Transition-based UCCA Parser

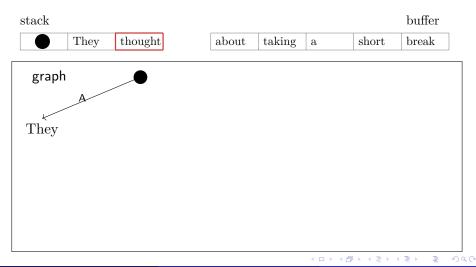
Parses text $w_1 \ldots w_n$ to graph G incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph.

Initial state:stackbufferTheythoughtabouttakingashortbreak

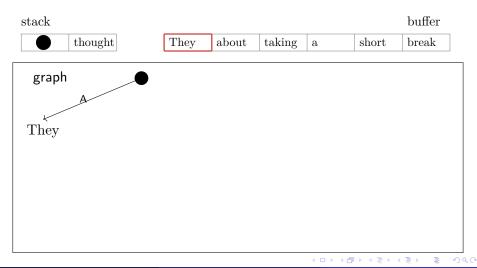

TUPA: Transition-based UCCA Parser

Parses text $w_1 \dots w_n$ to graph G incrementally by applying transitions to the parser state, consisting of: stack, buffer and constructed graph.

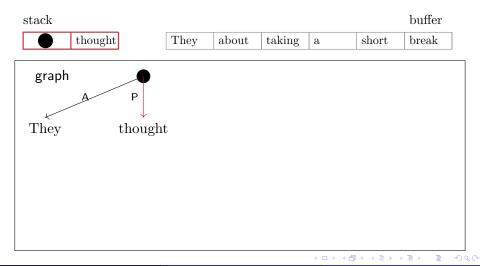

Initial state: stack buffer They thought about taking a short break

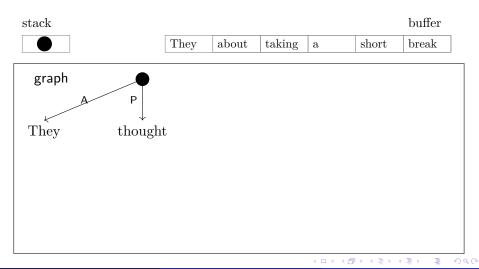

Transitions:

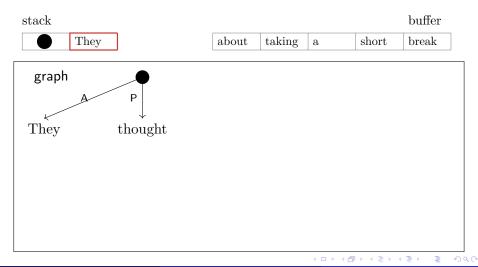
{SHIFT, REDUCE, NODE_X, LEFT-EDGE_X, RIGHT-EDGE_X, LEFT-REMOTE_X, RIGHT-REMOTE_X, Swap, FINISH}

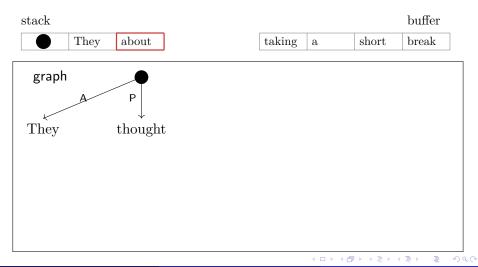


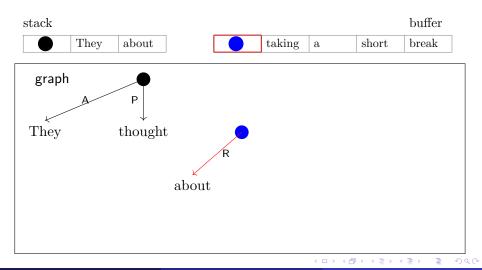
\Rightarrow Right-Edge_A

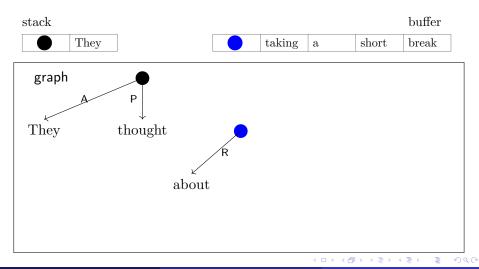


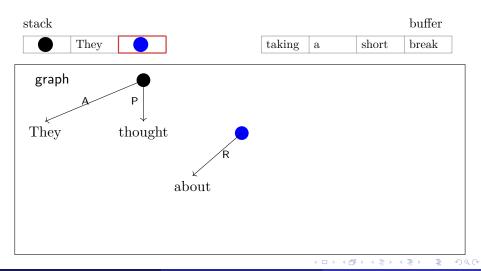

 \Rightarrow Swap



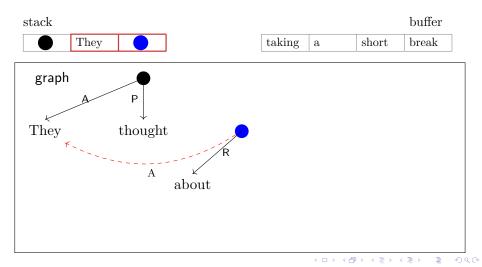

\Rightarrow Right-Edge_P

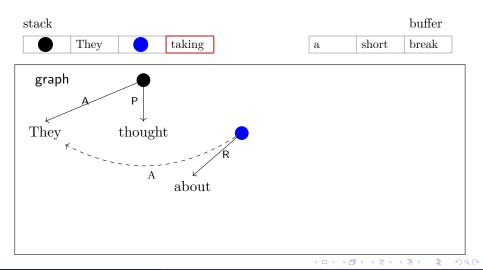

 \Rightarrow Reduce

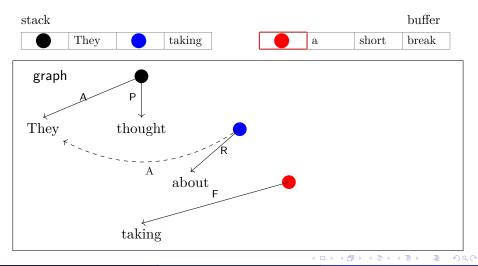




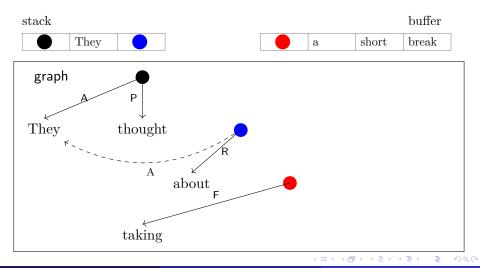
 $\Rightarrow \text{NODE}_R$

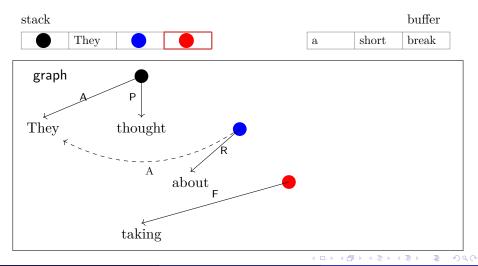



 \Rightarrow Reduce

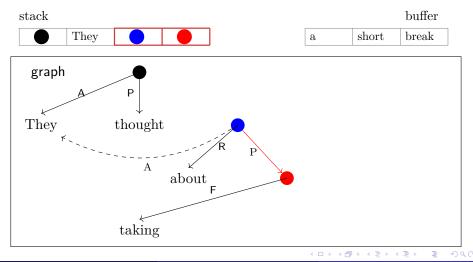


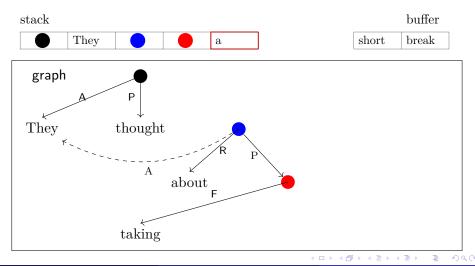
\Rightarrow Left-Remote_A

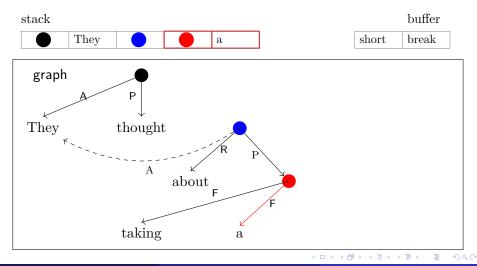




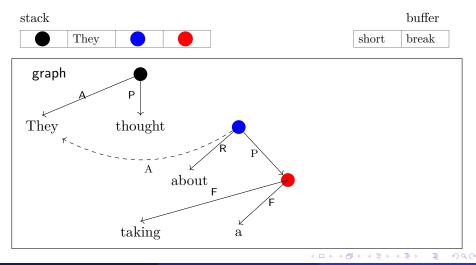
 $\Rightarrow \text{NODE}_{C}$



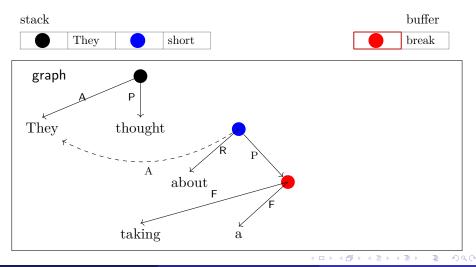

 \Rightarrow Reduce



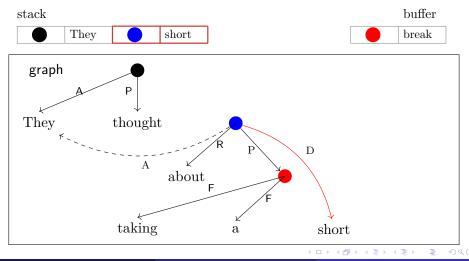
\Rightarrow Right-Edge_P

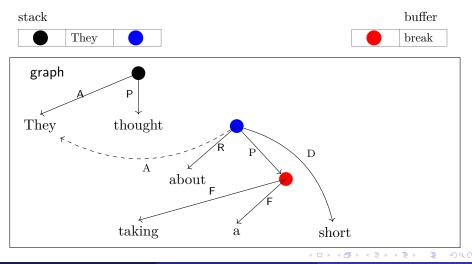


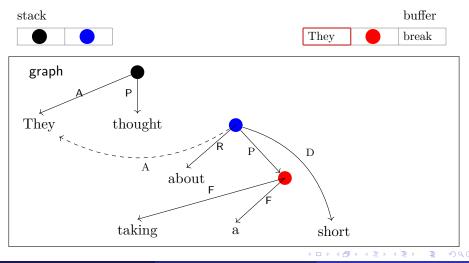
 \Rightarrow Right-Edge_F

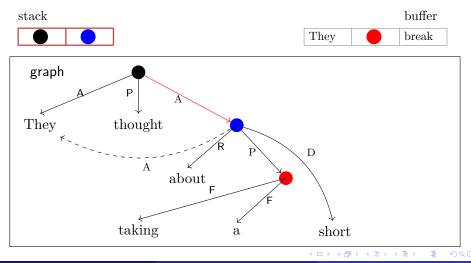


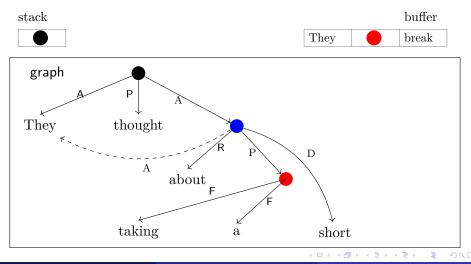
 \Rightarrow Reduce

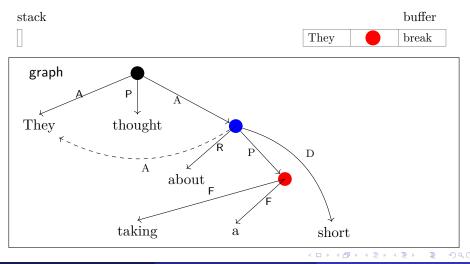


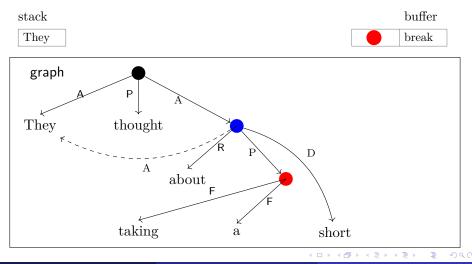

 \Rightarrow Swap


\Rightarrow Right-Edge_D

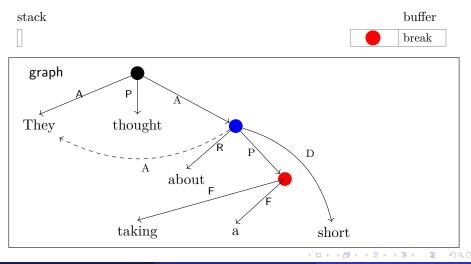

 \Rightarrow Reduce


 \Rightarrow Swap

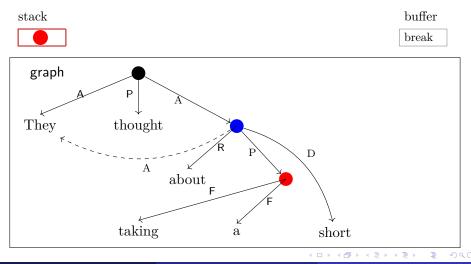

 \Rightarrow Right-Edge_A

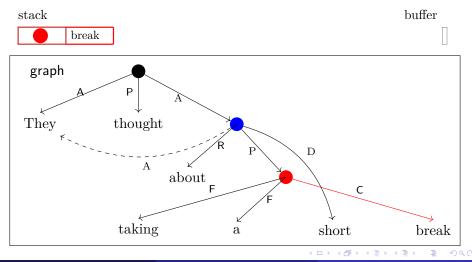


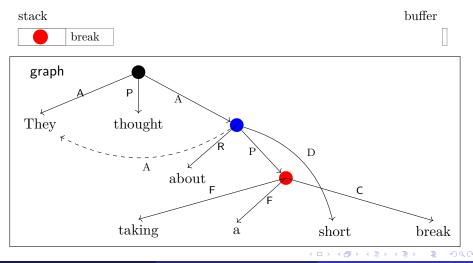
 \Rightarrow Reduce



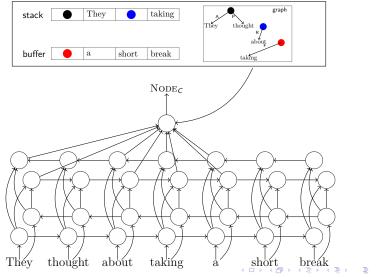
 \Rightarrow Reduce




 \Rightarrow Reduce


 \Rightarrow Shift

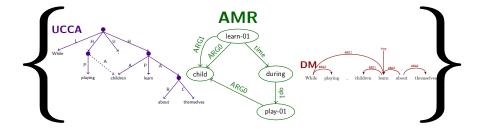
$\Rightarrow \operatorname{Right-Edge}_{\mathcal{C}}$



 \Rightarrow Finish


TUPA model

Learns to predict next transition based on current state.


Sharing for better generalization

Multitask Parsing Across Semantic Representations (2018)

Sharing for better generalization

Multitask Parsing Across Semantic Representations (2018)

Improved UCCA parsing in English, French and German.

DIKU Bits February 18, 2020 16 / 23

Shared tasks: parsing competitions

SemEval 2019 Task 1: Cross-lingual Semantic Parsing with UCCA

- 3 languages.
- 8 teams from 6 countries.

E 5 4

Shared tasks: parsing competitions

SemEval 2019 Task 1: Cross-lingual Semantic Parsing with UCCA

- 3 languages.
- 8 teams from 6 countries.

MRP 2019: Cross-Framework Meaning Representation Parsing

- 5 frameworks.
- 18 teams from 8 countries.

Shared tasks: parsing competitions

SemEval 2019 Task 1: Cross-lingual Semantic Parsing with UCCA

- 3 languages.
- 8 teams from 6 countries.

MRP 2019: Cross-Framework Meaning Representation Parsing

- 5 frameworks.
- 18 teams from 8 countries.

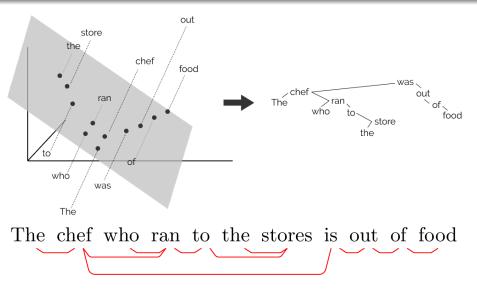
soon...

MRP 2020

- More frameworks.
- 5 languages.

17/23

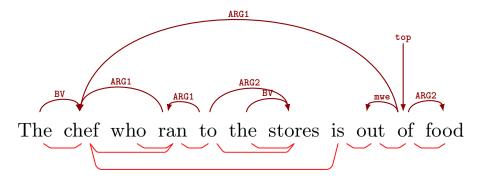
DIKU Bits February 18, 2020



What can meaning representation do for NLP?

- Probing for linguistic knowledge
- Querying knowledge bases
- Better machine translation

Probing for linguistic knowledge



https://nlp.stanford.edu/~johnhew/structural-probe.html

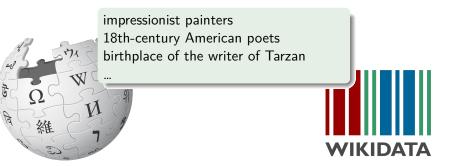
Daniel Hershcovich

Probing for linguistic knowledge

Are meaning representations implicitly learned by pretrained encoders?

https://nlp.stanford.edu/~johnhew/structural-probe.html

Querying knowledge bases

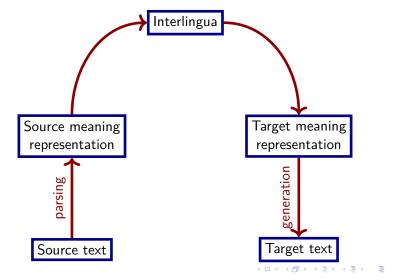

•••

Executable meaning representations: SQL, SPARQL

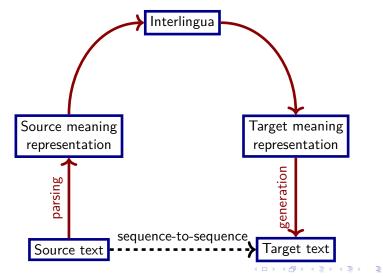
impressionist painters 18th-century American poets birthplace of the writer of Tarzan

Querying knowledge bases

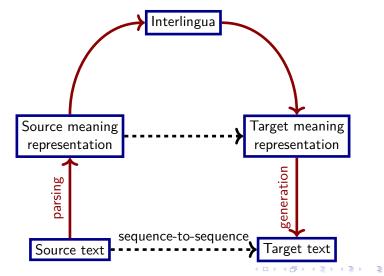
Executable meaning representations: SQL, SPARQL



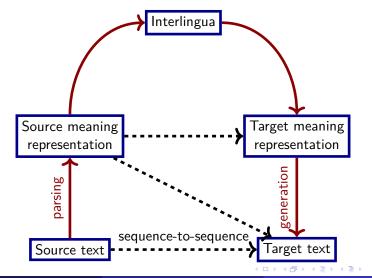
Executable meaning representations: SQL, SPARQL


```
SELECT DISTINCT ?painter ?painterLabel (count (DISTINCT ?exhibition) as ?
exhibition_count)
(group_concat(DISTINCT ?exhibitionLabel; separator=", ") as ?exhibitions)
WHERE {
    ?painter wdt:P106 wd:Q1028181 . #give me all people with occupation (P106) painter
(Q1028181)
    ?painter wdt:P135 wd:Q40415 . #who belonged to the impressionist (Q40415) movement
(P135)
    ?painting wdt:P170 ?painter . #the paintings created by (P170) the painter
    ?painting wdt:P608 ?exhibition . #have an exhibition history (P608) at an exhibition
    ?exhibition rdfs:label ?exhibitionLabel . #give me the english Labels of these
exhibitions, if possible
    FILTER (lang(?exhibitionLabel) = "en")
```

SERVICE wikibase:label {bd:serviceParam wikibase:language "en".}
} GROUP BY ?painter ?painterLabel


(Simplified) Vauquois triangle:

(Simplified) Vauquois triangle:



(Simplified) Vauquois triangle:

- DQC

(Simplified) Vauquois triangle:

Related courses

DIKU:

- Natural Language Processing
- Advanced Topics in Natural Language Processing
- Elements of Machine Learning
- Machine Learning
- Data Science

Linguistics:

- Semantics and pragmatics
- Language Processing 2
- Language 3 Semantics, Interaction Analysis, and Linguistic Theory

```
(I am not teaching yet.)
```

Contact me...

- ... if you are interested in a project on
 - Multilingual Enhanced Universal Dependency Parsing
 - Meaning Representation Encoding for Machine Translation
 - Semantic Dependency Probing of Pretrained Encoders
 - Linguistic Analysis of Pretraining Methods
 - Recursive Composition in Stack Pointer Parsers
 - Phase Transitions in Word Representation
 - Training Parsers with Translation Signals

dh@di.ku.dk