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IBM Project Debater (2012–2019)
AI system that can debate humans on complex topics
(e.g., We should ban the sale of violent video games)

5 research papers, e.g., Context Dependent Claim Detection (2014)

Argument Invention from First Principles (2019)
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Because violence in video games is
interactive and not passive, critics such
as Dave Grossman and Jack Thompson
argue that violence in games hardens
children to unethical acts, calling
first-person shooter games “murder
simulators”, although no conclusive
evidence has supported this belief
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Freedom of choice → People have the
right to make their own choices,
including bad ones

Black market → Prohibition is
counterproductive and only leads to
increased demand



What can we teach computers to do with language?

Translate:
Dave Grossman and Jack Thompson argue that violent games are harmful

↓
Dave Grossman og Jack Thompson hævder, at voldsomme spil er skadelige

Recognize entities:
Dave Grossman and Jack Thompson argue that violent games are harmful

Infer:

Violence in games hardens children to unethical acts
↓ entails

Violent games are harmful
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Natural Language Processing in 2020: The Basics

1. Pre-train representations:

Σ∗ → Rn

2. Train classifiers:
Rn → Y

3. Deploy:
Σ∗ → Y

Violence in games hardens children to unethical acts
?

Violent games are harmful

↓

↓
entailment
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Representation = vector of real numbers?



Learning from plain text: masked language modeling

Which Sesame Street ? is your favorite

BERT (Bidirectional Encoder Representations from Transformers):
Trained on 16GB of text.
16 TPU chips for 4 days.

https://demo.allennlp.org/masked-lm
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What can we teach computers to do with language?

Identify relations between concepts (parsing, various frameworks):

Dave Grossman and Jack Thompson argue that violent games are harmful .

nsubj

flat cc

conj

flat

root

mark

amod

nsubj

cop

ccomp

punct
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Breaking it down

[Meaning], [Representation] and [Parsing]
1. What we mean, 2. How to represent (something), 3. How to parse (something)

or

[Meaning Representation] and [Parsing]
1. How to represent what we mean, 2. How to parse (something)

or

[Meaning [Representation and Parsing]]
1. How to represent what we mean, 2. How to parse what we mean

or

[Meaning Representation] and [Parsing (to Meaning Representation)]
1. How to represent what we mean, 2. How to parse (1)
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Graphs

Universal Conceptual Cognitive Annotation (UCCA):

actsunethicaltochildrenhardensgamesvideoinViolence

handlingeruetisketilbørnhærdervideospiliVold
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Many meaning representation frameworks exist

UCCA

While

L
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P

H
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Parsing

A Transition-Based Directed Acyclic Graph Parser for UCCA (2017)
http://bit.ly/tupademo

They

A

thought

P

about

R

taking

F

a

F

short break

C

P

A

A D

m
Shift, Right-EdgeA, Shift, Swap, Right-EdgeP , Reduce, Shift, Shift, NodeR ,
Reduce, Left-RemoteA, Shift, Shift, NodeC , Reduce, Shift, Right-EdgeP ,
Shift, Right-EdgeF , Reduce, Shift, Swap, Right-EdgeD , Reduce, Swap,
Right-EdgeA, Reduce, Reduce, Shift, Reduce, Shift, Right-EdgeC , Finish
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TUPA: Transition-based UCCA Parser

Parses text w1 . . . wn to graph G incrementally by applying transitions to
the parser state, consisting of: stack, buffer and constructed graph.

Initial state:
stack buffer

They thought about taking a short break

Transitions:
{Shift, Reduce, NodeX , Left-EdgeX , Right-EdgeX ,

Left-RemoteX , Right-RemoteX , Swap, Finish}
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Example: TUPA Transition Sequence

⇒ Shift

stack buffer
They thought about taking a short break

graph

They

A

thought

P

about

R

taking

F

a

F

short break

C

P

A

A
D
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Example: TUPA Transition Sequence

⇒ Right-EdgeA
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graph
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F
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F
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A

A
D
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Example: TUPA Transition Sequence

⇒ Swap

stack buffer
thought They about taking a short break

graph

They

A

thought

P

about

R

taking

F

a

F

short break

C

P

A

A
D
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Example: TUPA Transition Sequence

⇒ Right-EdgeP

stack buffer
thought They about taking a short break

graph
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A
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Example: TUPA Transition Sequence

⇒ Reduce

stack buffer
They about taking a short break

graph

They

A

thought

P

about

R

taking

F

a

F

short break

C

P

A

A
D

Daniel Hershcovich DIKU Bits February 18, 2020 14 / 23



Example: TUPA Transition Sequence

⇒ Shift

stack buffer
They about taking a short break

graph

They

A

thought

P

about

R

taking

F

a

F

short break

C

P

A

A
D

Daniel Hershcovich DIKU Bits February 18, 2020 14 / 23



Example: TUPA Transition Sequence

⇒ Shift

stack buffer
They about taking a short break

graph

They

A

thought

P

about

R

taking

F

a

F

short break

C

P

A

A
D

Daniel Hershcovich DIKU Bits February 18, 2020 14 / 23



Example: TUPA Transition Sequence

⇒ NodeR

stack buffer
They about taking a short break

graph
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A

thought

P
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R

taking

F

a

F

short break

C

P

A

A
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Example: TUPA Transition Sequence

⇒ Left-RemoteA

stack buffer
They taking a short break
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taking

F
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F

short break
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Example: TUPA Transition Sequence

⇒ NodeC

stack buffer
They taking a short break

graph
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short break
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P
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Example: TUPA Transition Sequence

⇒ Reduce

stack buffer
They a short break

graph

They
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thought
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taking
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short break
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Example: TUPA Transition Sequence

⇒ Right-EdgeP
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Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence

⇒ Reduce

stack buffer
They short break
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Example: TUPA Transition Sequence

⇒ Swap

stack buffer
They short break
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Example: TUPA Transition Sequence

⇒ Right-EdgeD

stack buffer
They short break
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Example: TUPA Transition Sequence

⇒ Reduce

stack buffer
They break
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short break
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Example: TUPA Transition Sequence

⇒ Swap

stack buffer
They break
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Example: TUPA Transition Sequence

⇒ Right-EdgeA

stack buffer
They break
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Example: TUPA Transition Sequence

⇒ Reduce

stack buffer
They break
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Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence

⇒ Shift

stack buffer
break

graph

They

A

thought

P

about

R

taking

F

a

F

short break

C

P

A

A
D

Daniel Hershcovich DIKU Bits February 18, 2020 14 / 23



Example: TUPA Transition Sequence
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Example: TUPA Transition Sequence

⇒ Finish

stack buffer
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TUPA model

Learns to predict next transition based on current state.
stack They taking

buffer a short break

graph

They
A

thought
P

about
R

taking

F

a
F

short break
C

They thought about taking a short break

NodeC
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Sharing for better generalization

Multitask Parsing Across Semantic Representations (2018)

{UCCA

While

L

playing

P

H

,

U

children

A

learn

P

about

R

themselves

C

A

H

A

AMR

ARG0 time

op1

learn-01

child during

play-01

ARG0
AR

G1

DM
While playing , children learn about themselves

top

ARG2

ARG1

ARG1 ARG1 ARG2}

Improved UCCA parsing in English, French and German.
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Shared tasks: parsing competitions

SemEval 2019 Task 1: Cross-lingual Semantic Parsing with UCCA
3 languages.
8 teams from 6 countries.

MRP 2019: Cross-Framework Meaning Representation Parsing
5 frameworks.
18 teams from 8 countries.

soon...
MRP 2020

More frameworks.
5 languages.
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What can meaning representation do for NLP?

Probing for linguistic knowledge
Querying knowledge bases
Better machine translation
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Probing for linguistic knowledge

https://nlp.stanford.edu/~johnhew/structural-probe.html
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Probing for linguistic knowledge

Are meaning representations implicitly learned by pretrained encoders?

The chef who ran to the stores is out of food

BV
ARG1 ARG2

ARG1 BV

top

ARG2mwe

ARG1

https://nlp.stanford.edu/~johnhew/structural-probe.html
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Querying knowledge bases

Executable meaning representations: SQL, SPARQL
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Better machine translation

(Simplified) Vauquois triangle:

pa
rs

in
g

ge
ne

ra
tio

n

Interlingua

Source meaning
representation

Source text

Target meaning
representation

Target text

sequence-to-sequence
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Related courses

DIKU:
Natural Language Processing
Advanced Topics in Natural Language Processing
Elements of Machine Learning
Machine Learning
Data Science

Linguistics:
Semantics and pragmatics
Language Processing 2
Language 3 – Semantics, Interaction Analysis, and Linguistic Theory

(I am not teaching yet.)
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Contact me...

... if you are interested in a project on
Multilingual Enhanced Universal Dependency Parsing
Meaning Representation Encoding for Machine Translation
Semantic Dependency Probing of Pretrained Encoders
Linguistic Analysis of Pretraining Methods
Recursive Composition in Stack Pointer Parsers
Phase Transitions in Word Representation
Training Parsers with Translation Signals

dh@di.ku.dk
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dh@di.ku.dk

