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Abstract

This paper describes the TUPA system
submission to the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2019 Conference for Compu-
tational Language Learning (CoNLL). TUPA
provides a baseline point of comparison and is
not considered in the official ranking of partic-
ipating systems. While originally developed
for UCCA only, TUPA has been generalized
to support all MRP frameworks included in
the task, and trained using multi-task learning
to parse them all with a shared model. It is
a transition-based parser with a BiLSTM en-
coder, augmented with BERT contextualized
embeddings.

1 Introduction

TUPA (Transition-based UCCA/Universal Parser;
Hershcovich et al., 2017) is a general transition-
based parser for directed acyclic graphs (DAGs),
originally designed for parsing text to graphs in the
UCCA framework (Universal Conceptual Cogni-
tive Annotation; Abend and Rappoport, 2013).
It was used as the baseline system in SemEval
2019 Task 1: Cross-lingual Semantic Parsing with
UCCA (Hershcovich et al., 2019b), where it was
outranked by participating team submissions in all
tracks (open and closed in English, German and
French), but was also among the top 5 best-scoring
systems in all tracks, and reached second place in
the English closed tracks.

Being a general DAG parser, TUPA has been
shown (Hershcovich et al., 2018a,b) to support
other graph-based meaning representations and
similar frameworks, including UD (Universal De-
pendencies; Nivre et al., 2019), which was the fo-
cus of CoNLL 2017 and 2018 Shared Tasks (Ze-
man et al., 2017, 2018); AMR (Abstract Mean-
ing Representation; Banarescu et al., 2013), tar-
geted in SemEval 2016 and 2017 Shared Tasks

(May, 2016; May and Priyadarshi, 2017); and
DM (DELPH-IN MRS Bi-Lexical Dependencies;
Ivanova et al., 2012), one of the target representa-
tions, among PAS and PSD (Prague Semantic De-
pendencies; Hajic et al., 2012; Miyao et al., 2014),
in the SemEval 2014 and 2015 Shared Tasks
on SDP (Semantic Dependency Parsing; Oepen
et al., 2014, 2015, 2016). DM is converted from
DeepBank (Flickinger et al., 2012), a corpus of
hand-corrected parses from LinGO ERG (Copes-
take and Flickinger, 2000), an HPSG (Pollard and
Sag, 1994) using Minimal Recursion Semantics
(Copestake et al., 2005). EDS (Elementary De-
pendency Structures; Oepen and Lønning, 2006)
is another framework derived from ERG, encod-
ing English Resource Semantics in a variable-free
semantic dependency graph.

The CoNLL 2019 Shared Task (Oepen et al.,
2019) combines five frameworks for graph-based
meaning representation: DM, PSD, EDS, UCCA
and AMR. For the task, TUPA was extended to
support the MRP format and frameworks, and is
used as a baseline system, both as a single-task
system trained separately on each framework, and
as a multi-task system trained on all of them. The
code is publicly available.1

2 Intermediate Graph Representation

Meaning representation graphs in the shared tasks
are distributed in, and expected to be parsed to,
a uniform graph interchange format, serialized as
JSON Lines.2

The formalism encapsulates annotation for
graphs containing nodes (corresponding either to
text tokens, concepts, or logical predications),
with the following components: top nodes, node

1https://github.com/danielhers/tupa/
tree/mrp

2http://mrp.nlpl.eu/index.php?page=4

https://github.com/danielhers/tupa/tree/mrp
https://github.com/danielhers/tupa/tree/mrp
http://mrp.nlpl.eu/index.php?page=4
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Figure 1: Left: AMR graph, in the MRP formalism, for the sentence “After graduation, John moved to New York
City.” Edge labels are shown on the edges. Node labels are shown inside the nodes, along with any node properties
(in the form property=value). The text tokens are not part of the graph, and are matched to nodes by automatic
alignment (anchoring). Right: converted AMR graph in the intermediate graph representation. Same as in the
intermediate graph representation for all frameworks, it contains a virtual root node attached to the graph’s top
node with a TOP edge, and virtual terminal nodes corresponding to text tokens, attached according to the anchoring
(or, for AMR, the provided automatic alignments) with ANCHOR edges. Same as for all frameworks with node
labels and properties (i.e., all but UCCA), labels and properties are replaced with placeholders corresponding to
anchored tokens, where possible. The placeholder 〈`〉 corresponds to the concatenated lemmas of anchored tokens.
Specifically for AMR, name operator properties (e.g., op* for New York City) are collapsed to single properties.

labels, node properties, node anchoring, directed
edges, edge labels, and edge attributes.

While all frameworks represent top nodes, and
include directed, labeled edges, UCCA does not
contain node labels and properties, AMR lacks
node anchoring, and only UCCA has edge at-
tributes (distinguishing primary/remote edges).

2.1 Roots and Anchors

TUPA supports parsing to rooted graphs with la-
beled edges, and with the text tokens as terminals
(leaves), which is the standard format for UCCA
graphs. However, MRP graphs are not given in
this format, since there may be multiple roots and
the text tokens are only matched to the nodes by
anchoring (and not by explicit edges).

For the CoNLL 2019 Shared Task, TUPA was
extended to support node labels, node properties,
and edge attributes (see §3.1). Top nodes and an-
choring are combined into the graph by adding a
virtual root node and virtual terminal nodes, re-
spectively, during preprocessing.

A virtual terminal node is created per token ac-
cording to the tokenization predicted by UDPipe
(Straka and Straková, 2017) and provided as com-

panion data by the task organizers. All top nodes
are attached as children of the virtual root with a
TOP-labeled edge.

Nodes with anchoring are attached to the virtual
terminals associated with the tokens whose char-
acter spans intersect with their anchoring, with
ANCHOR-labeled edges. Note that anchoring is
automatically determined for training in the case
of AMR, using the alignments from the com-
panion data, computed by the ISI aligner (Pour-
damghani et al., 2014). There is no special treat-
ment of non-trivial anchoring for EDS: in case a
node is anchored to multiple tokens (as is the case
for multi-word expressions), they are all attached
with ANCHOR-labeled edges, resulting in possibly
multiple parents for some virtual terminal nodes.

During inference, after TUPA returns an output
graph, the virtual root and terminals are removed
as postprocessing to return the final graph. Top
nodes and anchoring are then inserted accordingly.

2.2 Placeholder Insertion

The number of distinct node labels and properties
is very large for most frameworks, resulting in se-
vere sparsity, as they are taken from an open vo-
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Before Transition
Transition

After Transition
Stack Buffer N. Edges Stack Buffer Nodes Edges Extra Effect
S x | B V E SHIFT S | x B V E
S | x B V E REDUCE S B V E
S | x B V E NODEX S | x y | B V ∪ {y} E | (y, x) `E(y, x)← X
S | x B V E CHILDX S | x y | B V ∪ {y} E | (x, y) `E(x, y)← X
S | x B V E LABELX S | x B V E `V (x)← X
S | x B V E PROPERTYX S | x B V E p(x)← X
S | y, x B V E LEFT-EDGEX S | y, x B V E | (x, y) `E(x, y)← X
S | x, y B V E RIGHT-EDGEX S | x, y B V E | (x, y) `E(x, y)← X
S B V E | (x, y) ATTRIBUTEX S B V E | (x, y) a(x)← X
S | x, y B V E SWAP S | y x | B V E
[root] ∅ V E FINISH ∅ ∅ V E terminal state

Figure 2: The TUPA-MRP transition set. We write the stack with its top to the right and the buffer with its
head to the left; the set of edges is also ordered with the latest edge on the right. NODE, LABEL, PROPERTY
and ATTRIBUTE require that x 6= root; CHILD, LABEL, PROPERTY, LEFT-EDGE and RIGHT-EDGE require that
x 6∈ w1:n; ATTRIBUTE requires that y 6∈ w1:n; LEFT-EDGE and RIGHT-EDGE require that y 6= root and that there
is no directed path from y to x; and SWAP requires that i(x) < i(y), where i(x) is the swap index (see §3.5).

cabulary of e.g. word senses and named entities.
However, many are simply copies of text tokens
and their lemmas.

To reduce the number of unique node labels
and properties, we use the (possibly automatic)
anchoring and UDPipe preprocessing to introduce
placeholders in the values. For example, a node
labeled move-01 anchored to the token moved
will be instead labeled 〈`〉-01, where 〈`〉 is a
placeholder for the token’s lemma. In this way
we reduce the number of node labels in the AMR
training set, for example, from tens of thousands
to 7,300, of which 2,000 occur only once and are
treated as unknown. We use similar placeholders
for the token’s surface form. Placeholders are re-
solved back to the full value after an output graph
is produced by the parser, according to the anchor-
ing in the graph. While nodes labels and properties
sometimes have a non-trivial relationship to the
text tokens, in most cases they contain the lemma
or surface form, making this a simple and effective
solution.

While more sophisticated alignment rules have
been developed (Flanigan et al., 2014; Pour-
damghani et al., 2014), such as using entity link-
ing (Daiber et al., 2013), as employed by Bjerva
et al. (2016); van Noord and Bos (2017), in this
baseline system we are employing a simple strat-
egy without relying on external, potentially non-
whitelisted resources.

Named entities in AMR are expressed by
name-labeled nodes, with a property for each to-
ken in the name, with keys op1, op2, etc. We in-

stead collapse these properties to a single op prop-
erty whose label is the concatenation of the name
tokens, with special separator symbols. This value
is in turn replaced by a placeholder, if the node is
anchored and the anchored tokens match the prop-
erty. Figure 1 demonstrates an AMR graph before
and after the conversion to the intermediate graph
representation.

3 Transition-based Meaning
Representation Parser

TUPA is a transition-based parser (Nivre, 2003),
constructing graphs incrementally from input to-
kens by applying transitions (actions) to the
parser state (configuration). The parser state is
composed of a buffer B of tokens and nodes to be
processed, a stack S of nodes currently being pro-
cessed, and an incrementally constructed graph G.
Some states are marked as terminal, meaning that
G is the final output. The input to the parser is a se-
quence of tokens: w1, . . . , wn. Parsing starts with
a (virtual) root node on the stack, and the input
tokens in the buffer, as (virtual) terminal nodes.

Given a gold-standard graph and a parser state,
an oracle returns the set of gold transitions to ap-
ply at the next step, i.e., all transitions that pre-
serve the reachability of the gold target graph.3

A classifier is trained using the oracle to select

3This type of oracle is similar to a dynamic oracle (Gold-
berg and Nivre, 2012; Goldberg, 2013), but in TUPA it only
supports the case where the current parser state is valid, i.e.,
only gold transitions have been applied since the initial state.
Training with exploration is thus not supported (yet).
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Figure 3: Illustration of the TUPA model, adapted from Hershcovich et al. (2018a), at an intermediate point in
the process of parsing the sentence “The fox gazed at the little prince for a long time.” Top: parser state (stack,
buffer and intermediate graph) for each framework. Bottom: encoder architecture. Input feature embeddings are
concatenate with BERT embeddings for each token. Vector representations for the input tokens are then computed
by two layers of shared and framework-specific bidirectional LSTMs. At each point in the parsing process, the
encoded vectors for specific tokens (from specific location in the stack/buffer) are concatenated with embedding
and numeric features from the parser state (for existing edge labels, number of children, etc.), and fed into the MLP
for selecting the next transition. Note that parsing the different frameworks is not performed jointly; the illustration
only expresses the parameter sharing scheme.

the next transition based on features encoding the
parser’s current state, where the training objective
is to maximize the sum of log-likelihoods of all
gold transitions at each step. If there are multiple
gold transitions, the highest-scoring one is taken
in training. Inference is performed greedily: the
highest-scoring transition is always taken.

Formally, the incrementally constructed graph
G consists of (V,E, `V , `E , p, a), where V is the
set of nodes, E is the sequence of directed edges,
`V : V → LV is the node label function, LV be-
ing the set of possible node labels, `E : E → LE

is the edge label function, LE being the set of pos-
sible edge labels, p : V → P(P ) is the node
property function, P being the set of possible node
property-value pairs, and a : E → P(A) is
the edge attribute function, A being the set of pos-
sible edge attribute-value pairs (a node may have
any number of properties; an edge may have any
number of attributes).

3.1 Transition Set

The set of possible transitions in TUPA is based
on a combination of transition sets from other

parsers, designed to support reentrancies (Sagae
and Tsujii, 2008; Tokgöz and Eryiğit, 2015), dis-
continuities (Nivre, 2009; Maier, 2015; Maier and
Lichte, 2016) and non-terminal nodes (Zhu et al.,
2013). Beyond the original TUPA transitions
(Hershcovich et al., 2017, 2018a), for the CoNLL
2019 Shared Task, transitions are added to support
node labels, node properties, and edge attributes.
Additionally, top nodes and node anchoring are
encoded by special edges from a virtual root node
and to virtual terminal nodes (corresponding to
text tokens), respectively (see §2).

The TUPA-MRP transition set is shown in Fig-
ure 2. It includes the following original TUPA
transitions: the standard SHIFT and REDUCE op-
erations (to move a node from the buffer to the
stack and to discard a stack node, respectively),
NODEX for creating a new non-terminal node and
an X-labeled edge (so that the new node is a par-
ent of the stack top), LEFT-EDGEX and RIGHT-
EDGEX to create a new X-labeled edge, SWAP

to handle discontinuous nodes (moving the second
topmost stack node back to the buffer), and FIN-
ISH to mark the state as terminal.



32

embeddings

MLP

LSTM

LSTM

LSTM

LSTM

⊕

embeddings

MLP

LSTM

LSTM

LSTM

LSTM

⊕

embeddings

MLP

LSTM

LSTM

LSTM

LSTM

⊕

embeddings

MLP

LSTM

LSTM

LSTM

LSTM

⊕

Figure 4: BiLSTM module, illustrated for an input se-
quence of four tokens.

Besides the original TUPA transitions, TUPA-
MRP contains a CHILD transition to create unan-
chored children for existing nodes (like NODE, but
the new node is a child of the stack top),4 a LA-
BEL transition to select a label for an existing node
(either the stack top of the second topmost stack
node), a PROPERTY transition to select a property-
value pair for an existing node, and an ATTRIBUTE

transition to select an attribute-value pair for an
existing edge (the last created edge).

The original TUPA transitions LEFT-
REMOTEX and RIGHT-REMOTEX , creating
new remote edges (a UCCA-specific distinction),
are omitted. Remote edges are encoded instead
as edges with the remote attribute, and are
supported by the combination of EDGE and
ATTRIBUTE transitions. In contrast to the original
TUPA transitions, EDGE transitions are allowed
to attach multiple parents to a node.

3.2 Transition Classifier

To predict the next transition at each step, TUPA
uses a BiLSTM module followed by an MLP and
a softmax layer for classification (Kiperwasser and
Goldberg, 2016). The model is illustrated in Fig-
ure 3.

The BiLSTM module (illustrated in more de-
tail in Figure 4) is applied before the transition se-

4While UCCA contains unanchored (implicit) nodes cor-
responding to non-instantiated arguments or predicates, the
original TUPA disregards them as they are not included in
standard UCCA evaluation. The CoNLL 2019 Shared Task
omits implicit UCCA nodes too, in fact, but the CHILD tran-
sition is included to support unanchored nodes in AMR, and
is not used otherwise.

quence starts, running over the input tokenized se-
quence. It consists of a pre-BiLSTM MLP with
feature embeddings (§3.3) and pre-trained con-
textualized embeddings (§3.4) concatenated as in-
puts, followed by (multiple layers of) a bidirec-
tional recurrent neural network (Schuster and Pali-
wal, 1997; Graves, 2008) with a long short-term
memory cell (Hochreiter and Schmidhuber, 1997).

While edge labels are combined into the iden-
tity of the transition (so that for example, LEFT-
EDGEP and LEFT-EDGES are separate transitions
in the output), there is just one transition for each
of LABEL, PROPERTY and ATTRIBUTE. After
each time one of these transition is selected, an ad-
ditional classifier is evoked with the set of possible
values for the currently parsed framework. This
hard separation is made due to the large number
of node labels and properties in the MRP frame-
works. Since there is only one possible edge at-
tribute value (remote for UCCA), performing
this transition always results in this value being se-
lected.

3.3 Features
In both training and testing, we use vector embed-
dings representing the lemmas, coarse POS tags
(UPOS) and fine-grained POS tags (XPOS). These
feature values are provided by UDPipe as compan-
ion data by the task organizers. In addition, we
use punctuation and gap type features (Maier and
Lichte, 2016), and previously predicted node and
edge labels, node properties, edge attributes and
parser actions. These embeddings are initialized
randomly (Glorot and Bengio, 2010).

To the feature embeddings, we concatenate nu-
meric features representing the node height, num-
ber of parents and children, and the ratio between
the number of terminals to total number of nodes
in the graph G. Numeric features are taken as
they are, whereas categorical features are mapped
to real-valued embedding vectors. For each non-
terminal node, we select a head terminal for fea-
ture extraction, by traversing down the graph, se-
lecting the first outgoing edge each time according
to alphabetical order of labels.

3.4 Pre-trained Contextualized Embeddings
Contextualized representation models such as
BERT (Devlin et al., 2019) have recently achieved
state-of-the-art results on a diverse array of down-
stream NLP tasks, gaining improved results com-
pared to non-contextual representations. We use
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the weighted sum of last four hidden layers of a
BERT pre-trained model as extra input features.5

BERT uses a wordpiece tokenizer (Wu et al.,
2016), which segments all text into sub-word
units, while TUPA uses the UDPipe tokenization.
To maintain alignment between wordpieces and
tokens, we use a summation of the outputs of
BERT vectors corresponding to the wordpieces of
each token as its representation.

3.5 Constraints

As each annotation scheme has different con-
straints on the allowed graph structures, we apply
these constraints separately for each task. Dur-
ing training and parsing, the relevant constraint set
rules out some of the transitions according to the
parser state.

Some constraints are task-specific, others are
generic. For example, in AMR, a node with an
incoming NAME edge must have the NAME label.
In UCCA, a node may have at most one outgoing
edge with label ∈ {PROCESS, STATE}.

An example of a generic constraint is that stack
nodes that have been swapped should not be
swapped again, to avoid infinite loops in inference.
To implement this constraint, we define a swap in-
dex for each node, assigned when the node is cre-
ated. At initialization, only the root node and ter-
minals exist. We assign the root a swap index of
0, and for each terminal, its position in the text
(starting at 1). Whenever a node is created as a
result of a NODE or CHILD transition, its swap
index is the arithmetic mean of the swap indices
of the stack top and buffer head. While this con-
straint may theoretically limit the ability to parse
arbitrary graphs, in practice we find that all graphs
in the shared task training set can still be reached
without violating it.

4 Multi-Task Learning

Whereas in the single-task setting TUPA is trained
separately on each framework as described above,
in the multi-task setting, all frameworks share a
BiLSTM for encoding the input. In addition,
each framework has a framework-specific BiL-
STM, private to it. Each framework has its own
MLP on top of the concatenation of the shared and
framework-specific BiLSTM (see Figure 3).

5We used the bert-large-cased model
from https://github.com/huggingface/
pytorch-transformers.

Hyperparameter Value
Lemma dim. 200
UPOS dim. 20
XPOS dim. 20
Dep. rel. dim. 10
Punct. dim. 1
Action dim. 3
Node label dim. 20
Node prop. dim. 20
Edge label dim. 20
Edge attrib. dim. 1
MLP layers 2
MLP dim. 50
Shared BiLSTM layers 2
Shared BiLSTM dim. 500
Shared pre-BiLSTM MLP layers 1
Shared pre-BiLSTM MLP dim. 300
Private BiLSTM layers 2
Private BiLSTM dim. 500
Private pre-BiLSTM MLP layers 1
Private pre-BiLSTM MLP dim. 300

Table 1: Hyperparameter settings.

For node labels and properties and for edge at-
tributes (when applicable), an additional “axis”
(private BiLSTM and MLP) is added per frame-
work (e.g., AMR node labels are predicted sepa-
rately and with an identical architecture to AMR
transitions, except the output dimension is differ-
ent). This is true for the single-task setting too,
so in fact the single-task setting is multi-task over
{transitions, node labels, node properties, edge at-
tributes}.

5 Training details

The model is implemented using DyNet v2.1
(Neubig et al., 2017).6 Unless otherwise noted,
we use the default values provided by the pack-
age. We use the same hyperparameters as used in
previous experiments on UCCA parsing (Hersh-
covich et al., 2018a), without any hyperparameter
tuning on the CoNLL 2019 data.

5.1 Hyperparameters
We use dropout (Srivastava et al., 2014) be-
tween MLP layers, and recurrent dropout (Gal and
Ghahramani, 2016) between BiLSTM layers, both
with p = 0.4. We also use word, lemma, coarse-
and fine-grained POS tag dropout with α = 0.2

6http://dynet.io

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
http://dynet.io
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Offi- TUPA (single-task) TUPA (multi-task) Best System
cial ALL LPPS ALL LPPS ALL LPPS

DM 55.54 58.60 42.69 39.45 95.50 (Bai and Zhao, 2019) 94.96 (Che et al., 2019)
PSD 51.76 58.87 52.65 54.53 91.28 (Donatelli et al., 2019) 88.46 (Li et al., 2019)
EDS 81.00 81.36 73.95 74.81 91.85 (Zhang et al., 2019) 92.55 (Zhang et al., 2019)
UCCA 27.56 40.06 23.65 41.03 81.67 (Che et al., 2019) 82.61 (Che et al., 2019)
AMR 44.73 47.04 33.75 43.37 73.38 (Cao et al., 2019) 73.11 (Donatelli et al., 2019)
Overall 57.70 57.55 45.34 50.64 86.20 (Che et al., 2019) 84.88 (Donatelli et al., 2019)

Table 2: Official test MRP F-scores (in %) for TUPA (single-task and multi-task). For comparison, the highest
score achieved for each framework and evaluation set is shown.

(Kiperwasser and Goldberg, 2016): in training,
the embedding for a feature value w is replaced
with a zero vector with a probability of α

#(w)+α ,
where #(w) is the number of occurrences of w
observed. In addition, we use node dropout (Her-
shcovich et al., 2018a): with a probability of 0.1
at each step, all features associated with a single
node in the parser state are replaced with zero vec-
tors. For optimization we use a minibatch size
of 100, decaying all weights by 10−5 at each up-
date, and train with stochastic gradient descent for
50 epochs with a learning rate of 0.1, followed
by AMSGrad (Sashank J. Reddi, 2018) for 250
epochs with α = 0.001, β1 = 0.9 and β2 = 0.999.
Table 1 lists other hyperparameter settings.

5.2 Official Evaluation

For the official evaluation, we did not use a devel-
opment set, and trained on the full training set for
as many epochs as the evaluation period allowed
for. The multi-task model completed just 3 epoch
of training. The single task models completed 12
epochs for DM, 22 epochs for PSD, 14 epochs for
EDS, 100 epochs for UCCA (the maximum num-
ber we allowed) and 13 epochs for AMR.

Due to an oversight resulting from code re-use,
in the official evaluation we used non-whitelisted
resources. Specifically, for AMR, we used a con-
straint forcing any node whose label corresponds
to a PropBank (Palmer et al., 2005) frame to only
have the core arguments defined for the frame. We
obtained the possible arguments per frame from
the PropBank frame files.7 Additionally, for the
intermediate graph representation, we used place-
holders for tokens’ negation, verb, noun and adjec-
tive form, as well as organizational and relational
roles, from a pre-defined lexicon included in the

7https://github.com/propbank/
propbank-frames

AMR official resources.8 This is similar to the
delexicalization employed by Buys and Blunsom
(2017a) for AMR parsing.

5.3 Post-evaluation Training

After the evaluation period, we continued training
for a longer period of time, using a slightly modi-
fied system: we used only resources whitelisted by
the task organizers in the post-evaluation training,
removing the constraints and placeholders based
on PropBank and AMR lexicons.

In this setting, training is done over a shuffled
mix of the training set for all frameworks (no spe-
cial sampling is done to balance the number of in-
stances per framework), and a development set of
500 instances per framework (see §5.1). We se-
lect the epoch with the best average MRP F-score
score on a development set, selected by sampling
500 random training instances from each frame-
work (the development instances are excluded
from the training set). The large multi-task model
only completed 4 training epochs in the available
time, the single-task models completed 24 epochs
for DM, 31 epochs for PSD, 25 epochs for EDS,
69 epochs for UCCA and 23 epochs for AMR.

6 Results

Table 2 presents the averaged scores on the test
sets in the official evaluation (§5.2), for TUPA
and for the best-performing system in each frame-
work and evaluation set. Since non-whitelisted
resources were used, the TUPA scores cannot be
taken as a baseline. Furthermore, due to insuffi-
cient training time, all models but the UCCA one
are underfitting, while the UCCA model is overfit-
ting due to excessive training without early stop-
ping (no development set was used in this setting).

8https://amr.isi.edu/download.html

https://github.com/propbank/propbank-frames
https://github.com/propbank/propbank-frames
https://amr.isi.edu/download.html
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Post- MRP Test Scores Native Evaluation Test Scores Trans./
Evalua- TUPA (single-task) TUPA (multi-task) TUPA (single-task) TUPA (multi-task) Token
tion ALL LPPS ALL LPPS ALL LPPS ALL LPPS Ratio
DM 75.57 80.46 62.16 66.07 77.16 79.27 72.65 71.80 8.4
PSD 70.86 70.62 65.95 68.05 69.53 72.03 61.27 65.81 6.7
EDS 84.85 85.36 79.39 80.25 72.38 72.68 79.84 80.29 12.8
UCCA 77.69 82.15 64.05 73.11 57.42 65.90 35.60 50.29 8.4
AMR 53.85 53.47 39.00 42.62 53.05 52.52 38.11 40.47 6.6
Overall 75.73 77.63 66.01 68.58 8.4

Table 3: Post-evaluation test scores (in %) for TUPA (single-task and multi-task), using the MRP F-score (left),
and using Native Evaluation (middle): labeled SDP F-score for DM and PSD, EDM F-score for EDS, primary
labeled F-score for UCCA, and Smatch for AMR. The rightmost column (Trans./Token Ratio) shows the mean
ratio between length of oracle transition sequence and sentence length, over the training set.

6.1 Post-evaluation Results

Table 3 presents the averaged scores on the test
sets for the post-evaluation trained models (§5.3).
Strikingly, the multi-task TUPA consistently falls
behind the single-task one, for each framework
separately and in the overall score. This stems
from several factors, namely that the sharing strat-
egy could be improved, but mainly since the multi-
task model is probably underfitting due to insuffi-
cient training. We conclude that better efficiency
and faster training is crucial for practical applica-
bility of this approach. Perhaps a smaller multi-
task model would have performed better by train-
ing on more data in the available time frame.

6.2 Diagnostic Evaluation

The rightmost column of Table 3 displays the
mean ratio between length of oracle transitions se-
quence and sentence length by framework, over
the shared task training set. Scores are clearly bet-
ter as the framework has longer oracle transition
sequences, perhaps because many of the transi-
tions are “easy” as they correspond to structural
elements of the graphs or properties copied from
the input tokens.

6.3 Comparability with Previous Results

Previous published results of applying TUPA to
UCCA parsing (Hershcovich et al., 2017, 2018a,
2019b,a) used a different version of the parser,
without contextualized word representations from
BERT.

For comparability with previous results, we
train and test an identical model to the one
presented in this paper, on the SemEval 2019
Task 1 data (Hershcovich et al., 2019b), which

is UCCA-only, but contains tracks in English,
German and French. For this experiment, we
use bert-multilingual instead of bert-
large-cased, and train a shared model over all
three languages. A 50-dimensional learned lan-
guage embedding vector is concatenated to the in-
put. Word, lemma and XPOS features are not
used. No multi-task learning with other frame-
works is employed. The results are shown in Ta-
ble 4. While improvement is achieved uniformly
over the previous TUPA scores, even with BERT,
TUPA is outperformed by the shared task win-
ners (Jiang et al., 2019). Note that Jiang et al.
(2019) also used bert-multilingual in the
open tracks.

We also train and test TUPA with BERT em-
beddings on v1.0 of the UCCA English Web Tree-
bank (EWT) reviews dataset (Hershcovich et al.,
2019a). While the EWT reviews are included in
the MRP shared task UCCA data, the different for-
mat and preprocessing makes for slightly different
scores, so we report the scores for comparability
with previous work in Table 5. We again see pro-
nounced improvements from incorporating pre-
trained contextualized embeddings into the model.

7 Related Work

Transition-based meaning representation parsing
dates back already to semantic dependency pars-
ing work by Sagae and Tsujii (2008); Tokgöz and
Eryiğit (2015), who support a DAG structure by
allowing multiple parents to be created by EDGE

transitions, and by Titov et al. (2009), who ap-
plied a SWAP transition (Nivre, 2008) for online
reordering of nodes to support non-projectivity.

Transition-based parsing was applied to AMR
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SemEval 2019 All Prim. Rem.
English-Wiki (open)
TUPA (w/o BERT) 73.5 73.9 53.5
TUPA (w/ BERT) 77.8 78.3 57.4
Jiang et al. (2019) 80.5 81.0 58.8
English-20K (open)
TUPA (w/o BERT) 68.4 69.4 25.9
TUPA (w/ BERT) 74.9 75.7 44.0
Jiang et al. (2019) 76.7 77.7 39.2
German-20K (open)
TUPA (w/o BERT) 79.1 79.6 59.9
TUPA (w/ BERT) 81.3 81.6 69.2
Jiang et al. (2019) 84.9 85.4 64.1
French-20K (open)
TUPA (w/o BERT) 48.7 49.6 2.4
TUPA (w/ BERT) 72.0 72.8 45.8
Jiang et al. (2019) 75.2 76.0 43.3

Table 4: Test UCCA F-score scores (in %) on all
edges, primary edges and remote edges, on the Se-
mEval 2019 Task 1 data. The previous published
TUPA scores are shown (TUPA w/o BERT), as well
as scores for TUPA with BERT contextualized embed-
dings, TUPA (w/ BERT), averaged over three sepa-
rately trained models in each setting, differing only by
random seed (standard deviation < 0.03); and the scores
for the best-scoring system from that shared task.

by Wang et al. (2015b,a, 2016); Wang and Xue
(2017); Guo and Lu (2018), who transformed syn-
tactic dependencies into AMRs by a sequence
of transitions. Subsequent work used transition-
based parsing to create AMRs from text di-
rectly (Damonte et al., 2017; Ballesteros and Al-
Onaizan, 2017; Naseem et al., 2019). Buys and
Blunsom (2017b) developed a transition-based
parser supporting both AMR and EDS.

8 Conclusion

We have presented TUPA, a baseline system in
the CoNLL 2019 shared task on Cross-Framework
Meaning Representation. TUPA is a general
transition-based DAG parser, which is trained with
multi-task learning on multiple frameworks. Its
input representation is augmented with BERT con-
textualized embeddings.
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Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proc. of CoNLL UD Shared Task, pages
1–21.

Daniel Zeman, Martin Popel, Milan Straka, Jan
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