
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 CoNLL, pages 28–39
Hong Kong, November 3, 2019. c©2019 Association for Computational Linguistics

https://doi.org/10.18653/v1/D19-6801

28

TUPA at MRP 2019: A Multi-Task Baseline System

Daniel Hershcovich* and Ofir Arviv**

*University of Copenhagen, Department of Computer Science
**Hebrew University of Jerusalem, School of Computer Science and Engineering

hershcovich@di.ku.dk, ofir.arviv@mail.huji.ac.il

Abstract

This paper describes the TUPA system
submission to the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2019 Conference for Compu-
tational Language Learning (CoNLL). TUPA
provides a baseline point of comparison and is
not considered in the official ranking of partic-
ipating systems. While originally developed
for UCCA only, TUPA has been generalized
to support all MRP frameworks included in
the task, and trained using multi-task learning
to parse them all with a shared model. It is
a transition-based parser with a BiLSTM en-
coder, augmented with BERT contextualized
embeddings.

1 Introduction

TUPA (Transition-based UCCA/Universal Parser;
Hershcovich et al., 2017) is a general transition-
based parser for directed acyclic graphs (DAGs),
originally designed for parsing text to graphs in the
UCCA framework (Universal Conceptual Cogni-
tive Annotation; Abend and Rappoport, 2013).
It was used as the baseline system in SemEval
2019 Task 1: Cross-lingual Semantic Parsing with
UCCA (Hershcovich et al., 2019b), where it was
outranked by participating team submissions in all
tracks (open and closed in English, German and
French), but was also among the top 5 best-scoring
systems in all tracks, and reached second place in
the English closed tracks.

Being a general DAG parser, TUPA has been
shown (Hershcovich et al., 2018a,b) to support
other graph-based meaning representations and
similar frameworks, including UD (Universal De-
pendencies; Nivre et al., 2019), which was the fo-
cus of CoNLL 2017 and 2018 Shared Tasks (Ze-
man et al., 2017, 2018); AMR (Abstract Mean-
ing Representation; Banarescu et al., 2013), tar-
geted in SemEval 2016 and 2017 Shared Tasks

(May, 2016; May and Priyadarshi, 2017); and
DM (DELPH-IN MRS Bi-Lexical Dependencies;
Ivanova et al., 2012), one of the target representa-
tions, among PAS and PSD (Prague Semantic De-
pendencies; Hajic et al., 2012; Miyao et al., 2014),
in the SemEval 2014 and 2015 Shared Tasks
on SDP (Semantic Dependency Parsing; Oepen
et al., 2014, 2015, 2016). DM is converted from
DeepBank (Flickinger et al., 2012), a corpus of
hand-corrected parses from LinGO ERG (Copes-
take and Flickinger, 2000), an HPSG (Pollard and
Sag, 1994) using Minimal Recursion Semantics
(Copestake et al., 2005). EDS (Elementary De-
pendency Structures; Oepen and Lønning, 2006)
is another framework derived from ERG, encod-
ing English Resource Semantics in a variable-free
semantic dependency graph.

The CoNLL 2019 Shared Task (Oepen et al.,
2019) combines five frameworks for graph-based
meaning representation: DM, PSD, EDS, UCCA
and AMR. For the task, TUPA was extended to
support the MRP format and frameworks, and is
used as a baseline system, both as a single-task
system trained separately on each framework, and
as a multi-task system trained on all of them. The
code is publicly available.1

2 Intermediate Graph Representation

Meaning representation graphs in the shared tasks
are distributed in, and expected to be parsed to,
a uniform graph interchange format, serialized as
JSON Lines.2

The formalism encapsulates annotation for
graphs containing nodes (corresponding either to
text tokens, concepts, or logical predications),
with the following components: top nodes, node

1https://github.com/danielhers/tupa/
tree/mrp

2http://mrp.nlpl.eu/index.php?page=4

https://github.com/danielhers/tupa/tree/mrp
https://github.com/danielhers/tupa/tree/mrp
http://mrp.nlpl.eu/index.php?page=4

29

move-01

after

graduate-01

op1

tim
e

person

name
op1=John

nam
e

A
R

G
0

city

name
op1=New
op2=York
op3=City

nam
e

ARG2

ARG0

〈`〉-01

after

〈`〉-01

op1

tim
e

person

name
op=〈`〉

nam
e

A
R

G
0

city

name
op=〈`〉

nam
e

ARG2

T
O

P
ARG0

After graduation , John moved to New York City

A
N

C
H

O
R

A
N

C
H

O
R

A
N

C
H

O
R

A
N

C
H

O
R

A
N

C
H

O
R A

N
C

H
O

R
A

N
C

H
O

R

Figure 1: Left: AMR graph, in the MRP formalism, for the sentence “After graduation, John moved to New York
City.” Edge labels are shown on the edges. Node labels are shown inside the nodes, along with any node properties
(in the form property=value). The text tokens are not part of the graph, and are matched to nodes by automatic
alignment (anchoring). Right: converted AMR graph in the intermediate graph representation. Same as in the
intermediate graph representation for all frameworks, it contains a virtual root node attached to the graph’s top
node with a TOP edge, and virtual terminal nodes corresponding to text tokens, attached according to the anchoring
(or, for AMR, the provided automatic alignments) with ANCHOR edges. Same as for all frameworks with node
labels and properties (i.e., all but UCCA), labels and properties are replaced with placeholders corresponding to
anchored tokens, where possible. The placeholder 〈`〉 corresponds to the concatenated lemmas of anchored tokens.
Specifically for AMR, name operator properties (e.g., op* for New York City) are collapsed to single properties.

labels, node properties, node anchoring, directed
edges, edge labels, and edge attributes.

While all frameworks represent top nodes, and
include directed, labeled edges, UCCA does not
contain node labels and properties, AMR lacks
node anchoring, and only UCCA has edge at-
tributes (distinguishing primary/remote edges).

2.1 Roots and Anchors

TUPA supports parsing to rooted graphs with la-
beled edges, and with the text tokens as terminals
(leaves), which is the standard format for UCCA
graphs. However, MRP graphs are not given in
this format, since there may be multiple roots and
the text tokens are only matched to the nodes by
anchoring (and not by explicit edges).

For the CoNLL 2019 Shared Task, TUPA was
extended to support node labels, node properties,
and edge attributes (see §3.1). Top nodes and an-
choring are combined into the graph by adding a
virtual root node and virtual terminal nodes, re-
spectively, during preprocessing.

A virtual terminal node is created per token ac-
cording to the tokenization predicted by UDPipe
(Straka and Straková, 2017) and provided as com-

panion data by the task organizers. All top nodes
are attached as children of the virtual root with a
TOP-labeled edge.

Nodes with anchoring are attached to the virtual
terminals associated with the tokens whose char-
acter spans intersect with their anchoring, with
ANCHOR-labeled edges. Note that anchoring is
automatically determined for training in the case
of AMR, using the alignments from the com-
panion data, computed by the ISI aligner (Pour-
damghani et al., 2014). There is no special treat-
ment of non-trivial anchoring for EDS: in case a
node is anchored to multiple tokens (as is the case
for multi-word expressions), they are all attached
with ANCHOR-labeled edges, resulting in possibly
multiple parents for some virtual terminal nodes.

During inference, after TUPA returns an output
graph, the virtual root and terminals are removed
as postprocessing to return the final graph. Top
nodes and anchoring are then inserted accordingly.

2.2 Placeholder Insertion

The number of distinct node labels and properties
is very large for most frameworks, resulting in se-
vere sparsity, as they are taken from an open vo-

30

Before Transition
Transition

After Transition
Stack Buffer N. Edges Stack Buffer Nodes Edges Extra Effect
S x | B V E SHIFT S | x B V E
S | x B V E REDUCE S B V E
S | x B V E NODEX S | x y | B V ∪ {y} E | (y, x) `E(y, x)← X
S | x B V E CHILDX S | x y | B V ∪ {y} E | (x, y) `E(x, y)← X
S | x B V E LABELX S | x B V E `V (x)← X
S | x B V E PROPERTYX S | x B V E p(x)← X
S | y, x B V E LEFT-EDGEX S | y, x B V E | (x, y) `E(x, y)← X
S | x, y B V E RIGHT-EDGEX S | x, y B V E | (x, y) `E(x, y)← X
S B V E | (x, y) ATTRIBUTEX S B V E | (x, y) a(x)← X
S | x, y B V E SWAP S | y x | B V E
[root] ∅ V E FINISH ∅ ∅ V E terminal state

Figure 2: The TUPA-MRP transition set. We write the stack with its top to the right and the buffer with its
head to the left; the set of edges is also ordered with the latest edge on the right. NODE, LABEL, PROPERTY
and ATTRIBUTE require that x 6= root; CHILD, LABEL, PROPERTY, LEFT-EDGE and RIGHT-EDGE require that
x 6∈ w1:n; ATTRIBUTE requires that y 6∈ w1:n; LEFT-EDGE and RIGHT-EDGE require that y 6= root and that there
is no directed path from y to x; and SWAP requires that i(x) < i(y), where i(x) is the swap index (see §3.5).

cabulary of e.g. word senses and named entities.
However, many are simply copies of text tokens
and their lemmas.

To reduce the number of unique node labels
and properties, we use the (possibly automatic)
anchoring and UDPipe preprocessing to introduce
placeholders in the values. For example, a node
labeled move-01 anchored to the token moved
will be instead labeled 〈`〉-01, where 〈`〉 is a
placeholder for the token’s lemma. In this way
we reduce the number of node labels in the AMR
training set, for example, from tens of thousands
to 7,300, of which 2,000 occur only once and are
treated as unknown. We use similar placeholders
for the token’s surface form. Placeholders are re-
solved back to the full value after an output graph
is produced by the parser, according to the anchor-
ing in the graph. While nodes labels and properties
sometimes have a non-trivial relationship to the
text tokens, in most cases they contain the lemma
or surface form, making this a simple and effective
solution.

While more sophisticated alignment rules have
been developed (Flanigan et al., 2014; Pour-
damghani et al., 2014), such as using entity link-
ing (Daiber et al., 2013), as employed by Bjerva
et al. (2016); van Noord and Bos (2017), in this
baseline system we are employing a simple strat-
egy without relying on external, potentially non-
whitelisted resources.

Named entities in AMR are expressed by
name-labeled nodes, with a property for each to-
ken in the name, with keys op1, op2, etc. We in-

stead collapse these properties to a single op prop-
erty whose label is the concatenation of the name
tokens, with special separator symbols. This value
is in turn replaced by a placeholder, if the node is
anchored and the anchored tokens match the prop-
erty. Figure 1 demonstrates an AMR graph before
and after the conversion to the intermediate graph
representation.

3 Transition-based Meaning
Representation Parser

TUPA is a transition-based parser (Nivre, 2003),
constructing graphs incrementally from input to-
kens by applying transitions (actions) to the
parser state (configuration). The parser state is
composed of a buffer B of tokens and nodes to be
processed, a stack S of nodes currently being pro-
cessed, and an incrementally constructed graph G.
Some states are marked as terminal, meaning that
G is the final output. The input to the parser is a se-
quence of tokens: w1, . . . , wn. Parsing starts with
a (virtual) root node on the stack, and the input
tokens in the buffer, as (virtual) terminal nodes.

Given a gold-standard graph and a parser state,
an oracle returns the set of gold transitions to ap-
ply at the next step, i.e., all transitions that pre-
serve the reachability of the gold target graph.3

A classifier is trained using the oracle to select

3This type of oracle is similar to a dynamic oracle (Gold-
berg and Nivre, 2012; Goldberg, 2013), but in TUPA it only
supports the case where the current parser state is valid, i.e.,
only gold transitions have been applied since the initial state.
Training with exploration is thus not supported (yet).

31

DM parser state
S

gazed

B

at the...

G

The fox

PSD parser state
S

gazed

B

at the...

G

The fox

EDS parser state
S

gazed

B

at the...

G

The fox

UCCA parser state
S

gazed

B

at the...

G

The fox

AMR parser state
S

gazed

B

at the...

G

fox

Shared BiLSTM module⊕ Framework-specific BiLSTM module

feature
embeddings,

BERT

The

⊕

fox

⊕

gazed

⊕

at

⊕

the

⊕

little

⊕

prince

⊕

for

⊕

a

⊕

long

⊕

time

⊕

.

⊕

MLP

transition
softmax

MLP

transition
softmax

MLP

transition
softmax

MLP

transition
softmax

MLP

transition
softmax

Figure 3: Illustration of the TUPA model, adapted from Hershcovich et al. (2018a), at an intermediate point in
the process of parsing the sentence “The fox gazed at the little prince for a long time.” Top: parser state (stack,
buffer and intermediate graph) for each framework. Bottom: encoder architecture. Input feature embeddings are
concatenate with BERT embeddings for each token. Vector representations for the input tokens are then computed
by two layers of shared and framework-specific bidirectional LSTMs. At each point in the parsing process, the
encoded vectors for specific tokens (from specific location in the stack/buffer) are concatenated with embedding
and numeric features from the parser state (for existing edge labels, number of children, etc.), and fed into the MLP
for selecting the next transition. Note that parsing the different frameworks is not performed jointly; the illustration
only expresses the parameter sharing scheme.

the next transition based on features encoding the
parser’s current state, where the training objective
is to maximize the sum of log-likelihoods of all
gold transitions at each step. If there are multiple
gold transitions, the highest-scoring one is taken
in training. Inference is performed greedily: the
highest-scoring transition is always taken.

Formally, the incrementally constructed graph
G consists of (V,E, `V , `E , p, a), where V is the
set of nodes, E is the sequence of directed edges,
`V : V → LV is the node label function, LV be-
ing the set of possible node labels, `E : E → LE

is the edge label function, LE being the set of pos-
sible edge labels, p : V → P(P) is the node
property function, P being the set of possible node
property-value pairs, and a : E → P(A) is
the edge attribute function, A being the set of pos-
sible edge attribute-value pairs (a node may have
any number of properties; an edge may have any
number of attributes).

3.1 Transition Set

The set of possible transitions in TUPA is based
on a combination of transition sets from other

parsers, designed to support reentrancies (Sagae
and Tsujii, 2008; Tokgöz and Eryiğit, 2015), dis-
continuities (Nivre, 2009; Maier, 2015; Maier and
Lichte, 2016) and non-terminal nodes (Zhu et al.,
2013). Beyond the original TUPA transitions
(Hershcovich et al., 2017, 2018a), for the CoNLL
2019 Shared Task, transitions are added to support
node labels, node properties, and edge attributes.
Additionally, top nodes and node anchoring are
encoded by special edges from a virtual root node
and to virtual terminal nodes (corresponding to
text tokens), respectively (see §2).

The TUPA-MRP transition set is shown in Fig-
ure 2. It includes the following original TUPA
transitions: the standard SHIFT and REDUCE op-
erations (to move a node from the buffer to the
stack and to discard a stack node, respectively),
NODEX for creating a new non-terminal node and
an X-labeled edge (so that the new node is a par-
ent of the stack top), LEFT-EDGEX and RIGHT-
EDGEX to create a new X-labeled edge, SWAP

to handle discontinuous nodes (moving the second
topmost stack node back to the buffer), and FIN-
ISH to mark the state as terminal.

32

embeddings

MLP

LSTM

LSTM

LSTM

LSTM

⊕

embeddings

MLP

LSTM

LSTM

LSTM

LSTM

⊕

embeddings

MLP

LSTM

LSTM

LSTM

LSTM

⊕

embeddings

MLP

LSTM

LSTM

LSTM

LSTM

⊕

Figure 4: BiLSTM module, illustrated for an input se-
quence of four tokens.

Besides the original TUPA transitions, TUPA-
MRP contains a CHILD transition to create unan-
chored children for existing nodes (like NODE, but
the new node is a child of the stack top),4 a LA-
BEL transition to select a label for an existing node
(either the stack top of the second topmost stack
node), a PROPERTY transition to select a property-
value pair for an existing node, and an ATTRIBUTE

transition to select an attribute-value pair for an
existing edge (the last created edge).

The original TUPA transitions LEFT-
REMOTEX and RIGHT-REMOTEX , creating
new remote edges (a UCCA-specific distinction),
are omitted. Remote edges are encoded instead
as edges with the remote attribute, and are
supported by the combination of EDGE and
ATTRIBUTE transitions. In contrast to the original
TUPA transitions, EDGE transitions are allowed
to attach multiple parents to a node.

3.2 Transition Classifier

To predict the next transition at each step, TUPA
uses a BiLSTM module followed by an MLP and
a softmax layer for classification (Kiperwasser and
Goldberg, 2016). The model is illustrated in Fig-
ure 3.

The BiLSTM module (illustrated in more de-
tail in Figure 4) is applied before the transition se-

4While UCCA contains unanchored (implicit) nodes cor-
responding to non-instantiated arguments or predicates, the
original TUPA disregards them as they are not included in
standard UCCA evaluation. The CoNLL 2019 Shared Task
omits implicit UCCA nodes too, in fact, but the CHILD tran-
sition is included to support unanchored nodes in AMR, and
is not used otherwise.

quence starts, running over the input tokenized se-
quence. It consists of a pre-BiLSTM MLP with
feature embeddings (§3.3) and pre-trained con-
textualized embeddings (§3.4) concatenated as in-
puts, followed by (multiple layers of) a bidirec-
tional recurrent neural network (Schuster and Pali-
wal, 1997; Graves, 2008) with a long short-term
memory cell (Hochreiter and Schmidhuber, 1997).

While edge labels are combined into the iden-
tity of the transition (so that for example, LEFT-
EDGEP and LEFT-EDGES are separate transitions
in the output), there is just one transition for each
of LABEL, PROPERTY and ATTRIBUTE. After
each time one of these transition is selected, an ad-
ditional classifier is evoked with the set of possible
values for the currently parsed framework. This
hard separation is made due to the large number
of node labels and properties in the MRP frame-
works. Since there is only one possible edge at-
tribute value (remote for UCCA), performing
this transition always results in this value being se-
lected.

3.3 Features
In both training and testing, we use vector embed-
dings representing the lemmas, coarse POS tags
(UPOS) and fine-grained POS tags (XPOS). These
feature values are provided by UDPipe as compan-
ion data by the task organizers. In addition, we
use punctuation and gap type features (Maier and
Lichte, 2016), and previously predicted node and
edge labels, node properties, edge attributes and
parser actions. These embeddings are initialized
randomly (Glorot and Bengio, 2010).

To the feature embeddings, we concatenate nu-
meric features representing the node height, num-
ber of parents and children, and the ratio between
the number of terminals to total number of nodes
in the graph G. Numeric features are taken as
they are, whereas categorical features are mapped
to real-valued embedding vectors. For each non-
terminal node, we select a head terminal for fea-
ture extraction, by traversing down the graph, se-
lecting the first outgoing edge each time according
to alphabetical order of labels.

3.4 Pre-trained Contextualized Embeddings
Contextualized representation models such as
BERT (Devlin et al., 2019) have recently achieved
state-of-the-art results on a diverse array of down-
stream NLP tasks, gaining improved results com-
pared to non-contextual representations. We use

33

the weighted sum of last four hidden layers of a
BERT pre-trained model as extra input features.5

BERT uses a wordpiece tokenizer (Wu et al.,
2016), which segments all text into sub-word
units, while TUPA uses the UDPipe tokenization.
To maintain alignment between wordpieces and
tokens, we use a summation of the outputs of
BERT vectors corresponding to the wordpieces of
each token as its representation.

3.5 Constraints

As each annotation scheme has different con-
straints on the allowed graph structures, we apply
these constraints separately for each task. Dur-
ing training and parsing, the relevant constraint set
rules out some of the transitions according to the
parser state.

Some constraints are task-specific, others are
generic. For example, in AMR, a node with an
incoming NAME edge must have the NAME label.
In UCCA, a node may have at most one outgoing
edge with label ∈ {PROCESS, STATE}.

An example of a generic constraint is that stack
nodes that have been swapped should not be
swapped again, to avoid infinite loops in inference.
To implement this constraint, we define a swap in-
dex for each node, assigned when the node is cre-
ated. At initialization, only the root node and ter-
minals exist. We assign the root a swap index of
0, and for each terminal, its position in the text
(starting at 1). Whenever a node is created as a
result of a NODE or CHILD transition, its swap
index is the arithmetic mean of the swap indices
of the stack top and buffer head. While this con-
straint may theoretically limit the ability to parse
arbitrary graphs, in practice we find that all graphs
in the shared task training set can still be reached
without violating it.

4 Multi-Task Learning

Whereas in the single-task setting TUPA is trained
separately on each framework as described above,
in the multi-task setting, all frameworks share a
BiLSTM for encoding the input. In addition,
each framework has a framework-specific BiL-
STM, private to it. Each framework has its own
MLP on top of the concatenation of the shared and
framework-specific BiLSTM (see Figure 3).

5We used the bert-large-cased model
from https://github.com/huggingface/
pytorch-transformers.

Hyperparameter Value
Lemma dim. 200
UPOS dim. 20
XPOS dim. 20
Dep. rel. dim. 10
Punct. dim. 1
Action dim. 3
Node label dim. 20
Node prop. dim. 20
Edge label dim. 20
Edge attrib. dim. 1
MLP layers 2
MLP dim. 50
Shared BiLSTM layers 2
Shared BiLSTM dim. 500
Shared pre-BiLSTM MLP layers 1
Shared pre-BiLSTM MLP dim. 300
Private BiLSTM layers 2
Private BiLSTM dim. 500
Private pre-BiLSTM MLP layers 1
Private pre-BiLSTM MLP dim. 300

Table 1: Hyperparameter settings.

For node labels and properties and for edge at-
tributes (when applicable), an additional “axis”
(private BiLSTM and MLP) is added per frame-
work (e.g., AMR node labels are predicted sepa-
rately and with an identical architecture to AMR
transitions, except the output dimension is differ-
ent). This is true for the single-task setting too,
so in fact the single-task setting is multi-task over
{transitions, node labels, node properties, edge at-
tributes}.

5 Training details

The model is implemented using DyNet v2.1
(Neubig et al., 2017).6 Unless otherwise noted,
we use the default values provided by the pack-
age. We use the same hyperparameters as used in
previous experiments on UCCA parsing (Hersh-
covich et al., 2018a), without any hyperparameter
tuning on the CoNLL 2019 data.

5.1 Hyperparameters
We use dropout (Srivastava et al., 2014) be-
tween MLP layers, and recurrent dropout (Gal and
Ghahramani, 2016) between BiLSTM layers, both
with p = 0.4. We also use word, lemma, coarse-
and fine-grained POS tag dropout with α = 0.2

6http://dynet.io

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
http://dynet.io

34

Offi- TUPA (single-task) TUPA (multi-task) Best System
cial ALL LPPS ALL LPPS ALL LPPS

DM 55.54 58.60 42.69 39.45 95.50 (Bai and Zhao, 2019) 94.96 (Che et al., 2019)
PSD 51.76 58.87 52.65 54.53 91.28 (Donatelli et al., 2019) 88.46 (Li et al., 2019)
EDS 81.00 81.36 73.95 74.81 91.85 (Zhang et al., 2019) 92.55 (Zhang et al., 2019)
UCCA 27.56 40.06 23.65 41.03 81.67 (Che et al., 2019) 82.61 (Che et al., 2019)
AMR 44.73 47.04 33.75 43.37 73.38 (Cao et al., 2019) 73.11 (Donatelli et al., 2019)
Overall 57.70 57.55 45.34 50.64 86.20 (Che et al., 2019) 84.88 (Donatelli et al., 2019)

Table 2: Official test MRP F-scores (in %) for TUPA (single-task and multi-task). For comparison, the highest
score achieved for each framework and evaluation set is shown.

(Kiperwasser and Goldberg, 2016): in training,
the embedding for a feature value w is replaced
with a zero vector with a probability of α

#(w)+α ,
where #(w) is the number of occurrences of w
observed. In addition, we use node dropout (Her-
shcovich et al., 2018a): with a probability of 0.1
at each step, all features associated with a single
node in the parser state are replaced with zero vec-
tors. For optimization we use a minibatch size
of 100, decaying all weights by 10−5 at each up-
date, and train with stochastic gradient descent for
50 epochs with a learning rate of 0.1, followed
by AMSGrad (Sashank J. Reddi, 2018) for 250
epochs with α = 0.001, β1 = 0.9 and β2 = 0.999.
Table 1 lists other hyperparameter settings.

5.2 Official Evaluation

For the official evaluation, we did not use a devel-
opment set, and trained on the full training set for
as many epochs as the evaluation period allowed
for. The multi-task model completed just 3 epoch
of training. The single task models completed 12
epochs for DM, 22 epochs for PSD, 14 epochs for
EDS, 100 epochs for UCCA (the maximum num-
ber we allowed) and 13 epochs for AMR.

Due to an oversight resulting from code re-use,
in the official evaluation we used non-whitelisted
resources. Specifically, for AMR, we used a con-
straint forcing any node whose label corresponds
to a PropBank (Palmer et al., 2005) frame to only
have the core arguments defined for the frame. We
obtained the possible arguments per frame from
the PropBank frame files.7 Additionally, for the
intermediate graph representation, we used place-
holders for tokens’ negation, verb, noun and adjec-
tive form, as well as organizational and relational
roles, from a pre-defined lexicon included in the

7https://github.com/propbank/
propbank-frames

AMR official resources.8 This is similar to the
delexicalization employed by Buys and Blunsom
(2017a) for AMR parsing.

5.3 Post-evaluation Training

After the evaluation period, we continued training
for a longer period of time, using a slightly modi-
fied system: we used only resources whitelisted by
the task organizers in the post-evaluation training,
removing the constraints and placeholders based
on PropBank and AMR lexicons.

In this setting, training is done over a shuffled
mix of the training set for all frameworks (no spe-
cial sampling is done to balance the number of in-
stances per framework), and a development set of
500 instances per framework (see §5.1). We se-
lect the epoch with the best average MRP F-score
score on a development set, selected by sampling
500 random training instances from each frame-
work (the development instances are excluded
from the training set). The large multi-task model
only completed 4 training epochs in the available
time, the single-task models completed 24 epochs
for DM, 31 epochs for PSD, 25 epochs for EDS,
69 epochs for UCCA and 23 epochs for AMR.

6 Results

Table 2 presents the averaged scores on the test
sets in the official evaluation (§5.2), for TUPA
and for the best-performing system in each frame-
work and evaluation set. Since non-whitelisted
resources were used, the TUPA scores cannot be
taken as a baseline. Furthermore, due to insuffi-
cient training time, all models but the UCCA one
are underfitting, while the UCCA model is overfit-
ting due to excessive training without early stop-
ping (no development set was used in this setting).

8https://amr.isi.edu/download.html

https://github.com/propbank/propbank-frames
https://github.com/propbank/propbank-frames
https://amr.isi.edu/download.html

35

Post- MRP Test Scores Native Evaluation Test Scores Trans./
Evalua- TUPA (single-task) TUPA (multi-task) TUPA (single-task) TUPA (multi-task) Token
tion ALL LPPS ALL LPPS ALL LPPS ALL LPPS Ratio
DM 75.57 80.46 62.16 66.07 77.16 79.27 72.65 71.80 8.4
PSD 70.86 70.62 65.95 68.05 69.53 72.03 61.27 65.81 6.7
EDS 84.85 85.36 79.39 80.25 72.38 72.68 79.84 80.29 12.8
UCCA 77.69 82.15 64.05 73.11 57.42 65.90 35.60 50.29 8.4
AMR 53.85 53.47 39.00 42.62 53.05 52.52 38.11 40.47 6.6
Overall 75.73 77.63 66.01 68.58 8.4

Table 3: Post-evaluation test scores (in %) for TUPA (single-task and multi-task), using the MRP F-score (left),
and using Native Evaluation (middle): labeled SDP F-score for DM and PSD, EDM F-score for EDS, primary
labeled F-score for UCCA, and Smatch for AMR. The rightmost column (Trans./Token Ratio) shows the mean
ratio between length of oracle transition sequence and sentence length, over the training set.

6.1 Post-evaluation Results

Table 3 presents the averaged scores on the test
sets for the post-evaluation trained models (§5.3).
Strikingly, the multi-task TUPA consistently falls
behind the single-task one, for each framework
separately and in the overall score. This stems
from several factors, namely that the sharing strat-
egy could be improved, but mainly since the multi-
task model is probably underfitting due to insuffi-
cient training. We conclude that better efficiency
and faster training is crucial for practical applica-
bility of this approach. Perhaps a smaller multi-
task model would have performed better by train-
ing on more data in the available time frame.

6.2 Diagnostic Evaluation

The rightmost column of Table 3 displays the
mean ratio between length of oracle transitions se-
quence and sentence length by framework, over
the shared task training set. Scores are clearly bet-
ter as the framework has longer oracle transition
sequences, perhaps because many of the transi-
tions are “easy” as they correspond to structural
elements of the graphs or properties copied from
the input tokens.

6.3 Comparability with Previous Results

Previous published results of applying TUPA to
UCCA parsing (Hershcovich et al., 2017, 2018a,
2019b,a) used a different version of the parser,
without contextualized word representations from
BERT.

For comparability with previous results, we
train and test an identical model to the one
presented in this paper, on the SemEval 2019
Task 1 data (Hershcovich et al., 2019b), which

is UCCA-only, but contains tracks in English,
German and French. For this experiment, we
use bert-multilingual instead of bert-
large-cased, and train a shared model over all
three languages. A 50-dimensional learned lan-
guage embedding vector is concatenated to the in-
put. Word, lemma and XPOS features are not
used. No multi-task learning with other frame-
works is employed. The results are shown in Ta-
ble 4. While improvement is achieved uniformly
over the previous TUPA scores, even with BERT,
TUPA is outperformed by the shared task win-
ners (Jiang et al., 2019). Note that Jiang et al.
(2019) also used bert-multilingual in the
open tracks.

We also train and test TUPA with BERT em-
beddings on v1.0 of the UCCA English Web Tree-
bank (EWT) reviews dataset (Hershcovich et al.,
2019a). While the EWT reviews are included in
the MRP shared task UCCA data, the different for-
mat and preprocessing makes for slightly different
scores, so we report the scores for comparability
with previous work in Table 5. We again see pro-
nounced improvements from incorporating pre-
trained contextualized embeddings into the model.

7 Related Work

Transition-based meaning representation parsing
dates back already to semantic dependency pars-
ing work by Sagae and Tsujii (2008); Tokgöz and
Eryiğit (2015), who support a DAG structure by
allowing multiple parents to be created by EDGE

transitions, and by Titov et al. (2009), who ap-
plied a SWAP transition (Nivre, 2008) for online
reordering of nodes to support non-projectivity.

Transition-based parsing was applied to AMR

36

SemEval 2019 All Prim. Rem.
English-Wiki (open)
TUPA (w/o BERT) 73.5 73.9 53.5
TUPA (w/ BERT) 77.8 78.3 57.4
Jiang et al. (2019) 80.5 81.0 58.8
English-20K (open)
TUPA (w/o BERT) 68.4 69.4 25.9
TUPA (w/ BERT) 74.9 75.7 44.0
Jiang et al. (2019) 76.7 77.7 39.2
German-20K (open)
TUPA (w/o BERT) 79.1 79.6 59.9
TUPA (w/ BERT) 81.3 81.6 69.2
Jiang et al. (2019) 84.9 85.4 64.1
French-20K (open)
TUPA (w/o BERT) 48.7 49.6 2.4
TUPA (w/ BERT) 72.0 72.8 45.8
Jiang et al. (2019) 75.2 76.0 43.3

Table 4: Test UCCA F-score scores (in %) on all
edges, primary edges and remote edges, on the Se-
mEval 2019 Task 1 data. The previous published
TUPA scores are shown (TUPA w/o BERT), as well
as scores for TUPA with BERT contextualized embed-
dings, TUPA (w/ BERT), averaged over three sepa-
rately trained models in each setting, differing only by
random seed (standard deviation < 0.03); and the scores
for the best-scoring system from that shared task.

by Wang et al. (2015b,a, 2016); Wang and Xue
(2017); Guo and Lu (2018), who transformed syn-
tactic dependencies into AMRs by a sequence
of transitions. Subsequent work used transition-
based parsing to create AMRs from text di-
rectly (Damonte et al., 2017; Ballesteros and Al-
Onaizan, 2017; Naseem et al., 2019). Buys and
Blunsom (2017b) developed a transition-based
parser supporting both AMR and EDS.

8 Conclusion

We have presented TUPA, a baseline system in
the CoNLL 2019 shared task on Cross-Framework
Meaning Representation. TUPA is a general
transition-based DAG parser, which is trained with
multi-task learning on multiple frameworks. Its
input representation is augmented with BERT con-
textualized embeddings.

Acknowledgments

We are grateful for the valuable feedback from the
anonymous reviewers. We would like to thank
the other task organizers, Stephan Oepen, Omri
Abend, Jan Hajič, Tim O’Gorman and Nianwen

EWT All Prim. Rem.
TUPA (w/o BERT) 71.0 72.1 47.0
TUPA (w/ BERT) 75.2 76.1 54.8

Table 5: Test UCCA F-score scores (in %) on all edges,
primary edges and remote edges, on the UCCA EWT
reviews data. TUPA (w/o BERT) is from (Hershcovich
et al., 2019a). TUPA (w/ BERT) is averaged over three
separately trained models in each setting, differing only
by random seed (standard deviation < 0.03).

Xue, for valuable discussions and tips on develop-
ing the baseline systems, as well as for providing
the data, evaluation metrics and information on the
various frameworks.

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proc. of
ACL, pages 228–238.

Joakim Nivre et al. 2019. Universal dependencies 2.4.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Hongxiao Bai and Hai Zhao. 2019. SJTU at
MRP 2019: A transition-based multi-task parser
for cross-framework meaning representation pars-
ing. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 86 – 94, Hong Kong, China.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR
parsing using stack-LSTMs. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1269–1275, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Martha Palmer, and Nathan Schneider.
2013. Abstract Meaning Representation for sem-
banking. In Proc. of the Linguistic Annotation
Workshop.

Johannes Bjerva, Johan Bos, and Hessel Haagsma.
2016. The meaning factory at SemEval-2016 task 8:
Producing AMRs with boxer. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 1179–1184, San Diego,
California. Association for Computational Linguis-
tics.

Jan Buys and Phil Blunsom. 2017a. Oxford at
SemEval-2017 task 9: Neural AMR parsing with
pointer-augmented attention. In Proc. of SemEval,
pages 914–919.

http://aclweb.org/anthology/P13-1023
http://aclweb.org/anthology/P13-1023
http://hdl.handle.net/11234/1-2988
https://doi.org/10.18653/v1/D17-1130
https://doi.org/10.18653/v1/D17-1130
http://aclweb.org/anthology/W13-2322
http://aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/S16-1182
https://doi.org/10.18653/v1/S16-1182
https://doi.org/10.18653/v1/S17-2157
https://doi.org/10.18653/v1/S17-2157
https://doi.org/10.18653/v1/S17-2157

37

Jan Buys and Phil Blunsom. 2017b. Robust incremen-
tal neural semantic graph parsing. In Proc. of ACL,
pages 1215–1226.

Jie Cao, Yi Zhang, Adel Youssef, and Vivek Sriku-
mar. 2019. Amazon at MRP 2019: Parsing mean-
ing representations with lexical and phrasal anchor-
ing. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 138 – 148, Hong Kong, China.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at
MRP 2019: A unified pipeline for meaning repre-
sentation parsing via efficient training and effective
encoding. In Proceedings of the Shared Task on
Cross-Framework Meaning Representation Parsing
at the 2019 Conference on Natural Language Learn-
ing, pages 76 – 85, Hong Kong, China.

Ann Copestake and Dan Flickinger. 2000. An
open source grammar development environment and
broad-coverage English grammar using HPSG. In
Proc. of LREC, pages 591–600.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A. Sag. 2005. Minimal recursion semantics:
An introduction. Research on Language and Com-
putation, 3(2):281–332.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N. Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Proc.
of I-Semantics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Meaning
Representation. In Proc. of EACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Lucia Donatelli, Meaghan Fowlie, Jonas Groschwitz,
Alexander Koller, Matthias Lindemann, Mario
Mina, and Pia WeiSSenhorn. 2019. Saarland at
MRP 2019: Compositional parsing across all graph-
banks. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 66 – 75, Hong Kong, China.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the Abstract Meaning
Representation. In Proc. of ACL, pages 1426–1436.

Daniel Flickinger, Yi Zhang, and Valia Kordoni. 2012.
DeepBank: A dynamically annotated treebank of the
Wall Street Journal. In Proc. of Workshop on Tree-
banks and Linguistic Theories, pages 85–96.

Yarin Gal and Zoubin Ghahramani. 2016. A Theoreti-
cally Grounded Application of Dropout in Recurrent
Neural Networks. In D D Lee, M Sugiyama, U V
Luxburg, I Guyon, and R Garnett, editors, Advances
in Neural Information Processing Systems 29, pages
1019–1027. Curran Associates, Inc.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth in-
ternational conference on artificial intelligence and
statistics, pages 249–256.

Yoav Goldberg. 2013. Dynamic-oracle transition-
based parsing with calibrated probabilistic output.
In Proc. of IWPT.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic
oracle for arc-eager dependency parsing. In Proc. of
COLING, pages 959–976.

Alex Graves. 2008. Supervised sequence labelling
with recurrent neural networks. Ph. D. thesis.

Zhijiang Guo and Wei Lu. 2018. Better transition-
based AMR parsing with a refined search space.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1712–1722, Brussels, Belgium. Association
for Computational Linguistics.

Jan Hajic, Eva Hajicová, Jarmila Panevová, Petr Sgall,
Ondrej Bojar, Silvie Cinková, Eva Fucíková, Marie
Mikulová, Petr Pajas, Jan Popelka, et al. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In LREC, pages 3153–3160.

Daniel Hershcovich, Omri Abend, and Ari Rap-
poport. 2017. A transition-based directed acyclic
graph parser for UCCA. In Proc. of ACL, pages
1127–1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018a. Multitask parsing across semantic represen-
tations. In Proc. of ACL, pages 373–385.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018b. Universal dependency parsing with a general
transition-based DAG parser. In Proc. of CoNLL
UD Shared Task, pages 103–112.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2019a. Content differences in syntactic and seman-
tic representation. In Proc. of NAACL-HLT, pages
478–488, Minneapolis, Minnesota. Association for
Computational Linguistics.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019b. SemEval-2019 task 1: Cross-lingual
semantic parsing with UCCA. In Proc. of SemEval,
pages 1–10.

https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112
https://www.cl.cam.ac.uk/~aac10/papers/lrec2000.pdf
https://www.cl.cam.ac.uk/~aac10/papers/lrec2000.pdf
https://www.cl.cam.ac.uk/~aac10/papers/lrec2000.pdf
https://doi.org/10.1007/s11168-006-6327-9
https://doi.org/10.1007/s11168-006-6327-9
http://homepages.inf.ed.ac.uk/scohen/eacl17amr.pdf
http://homepages.inf.ed.ac.uk/scohen/eacl17amr.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://aclweb.org/anthology/P14-1134
http://aclweb.org/anthology/P14-1134
http://aclweb.org/anthology/P14-1134
https://www.dfki.de/lt/publication_show.php?id=6619
https://www.dfki.de/lt/publication_show.php?id=6619
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://aclweb.org/anthology/C12-1059
http://aclweb.org/anthology/C12-1059
https://doi.org/10.18653/v1/D18-1198
https://doi.org/10.18653/v1/D18-1198
http://aclweb.org/anthology/P17-1104
http://aclweb.org/anthology/P17-1104
http://aclweb.org/anthology/P18-1035
http://aclweb.org/anthology/P18-1035
http://aclweb.org/anthology/K18-2010
http://aclweb.org/anthology/K18-2010
https://doi.org/10.18653/v1/N19-1047
https://doi.org/10.18653/v1/N19-1047
https://www.aclweb.org/anthology/S19-2001
https://www.aclweb.org/anthology/S19-2001

38

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom?
A contrastive study of syntacto-semantic dependen-
cies. In Proc. of LAW, pages 2–11.

Wei Jiang, Zhenghua Li, Yu Zhang, and Min Zhang.
2019. HLT@SUDA at SemEval-2019 task 1:
UCCA graph parsing as constituent tree parsing.
In Proceedings of the 13th International Workshop
on Semantic Evaluation, pages 11–15, Minneapo-
lis, Minnesota, USA. Association for Computational
Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. TACL,
4:313–327.

Zuchao Li, Hai Zhao, Zhuosheng Zhang, Rui Wang,
Masao Utiyama, and Eiichiro Sumita. 2019. SJTU–
NICT at MRP 2019: Multi-task learning for end-to-
end uniform semantic graph parsing. In Proceed-
ings of the Shared Task on Cross-Framework Mean-
ing Representation Parsing at the 2019 Conference
on Natural Language Learning, pages 45 – 54, Hong
Kong, China.

Wolfgang Maier. 2015. Discontinuous incremen-
tal shift-reduce parsing. In Proc. of ACL, pages
1202–1212.

Wolfgang Maier and Timm Lichte. 2016. Discontinu-
ous parsing with continuous trees. In Proc. of Work-
shop on Discontinuous Structures in NLP, pages
47–57.

Jonathan May. 2016. SemEval-2016 task 8: Meaning
representation parsing. In Proc. of SemEval, pages
1063–1073.

Jonathan May and Jay Priyadarshi. 2017. SemEval-
2017 task 9: Abstract Meaning Representation pars-
ing and generation. In Proc. of SemEval, pages
536–545.

Yusuke Miyao, Stephan Oepen, and Daniel Zeman.
2014. In-house: An ensemble of pre-existing off-
the-shelf parsers. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 335–340.

Tahira Naseem, Abhishek Shah, Hui Wan, Radu Flo-
rian, Salim Roukos, and Miguel Ballesteros. 2019.
Rewarding Smatch: Transition-based AMR parsing
with reinforcement learning. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4586–4592, Florence,
Italy. Association for Computational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel

Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The dynamic neural network toolkit. CoRR,
abs/1701.03980.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proc. of IWPT, pages
149–160.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proc. of ACL, pages
351–359.

Rik van Noord and Johan Bos. 2017. Dealing with
co-reference in neural semantic parsing. In Proc. of
SemDeep, pages 41–49.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
Urešová. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings of
the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Nat-
ural Language Learning, pages 1 – 27, Hong Kong,
China.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger,
Jan Hajic, Angelina Ivanova, and Zdenka Uresova.
2016. Towards comparability of linguistic graph
banks for semantic parsing. In Proc. of LREC.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajič, and Zdeňka Urešová. 2015. SemEval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proc. of SemEval, pages 915–926.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proc. of SemEval, pages 63–72.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based mrs banking. In LREC,
pages 1250–1255.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus
of semantic roles. Computational Linguistics, 31(1).

Carl Pollard and Ivan A Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press.

http://aclweb.org/anthology/W12-3602
http://aclweb.org/anthology/W12-3602
http://aclweb.org/anthology/W12-3602
https://doi.org/10.18653/v1/S19-2002
https://doi.org/10.18653/v1/S19-2002
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
http://aclweb.org/anthology/P15-1116
http://aclweb.org/anthology/P15-1116
http://aclweb.org/anthology/W16-0906
http://aclweb.org/anthology/W16-0906
https://doi.org/10.18653/v1/S16-1166
https://doi.org/10.18653/v1/S16-1166
https://doi.org/10.18653/v1/S17-2090
https://doi.org/10.18653/v1/S17-2090
https://doi.org/10.18653/v1/S17-2090
https://doi.org/10.18653/v1/P19-1451
https://doi.org/10.18653/v1/P19-1451
https://arxiv.org/abs/1701.03980
https://arxiv.org/abs/1701.03980
http://aclweb.org/anthology/W06-2933
http://aclweb.org/anthology/W06-2933
http://aclweb.org/anthology/P09-1040
http://aclweb.org/anthology/P09-1040
http://aclweb.org/anthology/W17-7306
http://aclweb.org/anthology/W17-7306
http://www.lrec-conf.org/proceedings/lrec2016/pdf/887_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/887_Paper.pdf
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/S14-2008
http://aclweb.org/anthology/S14-2008
http://www.aclweb.org/anthology/J05-1004
http://www.aclweb.org/anthology/J05-1004

39

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English strings with
Abstract Meaning Representation graphs. In Proc.
of EMNLP, pages 425–429.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce de-
pendency DAG parsing. In Proc. of COLING, pages
753–760.

Sanjiv Kumar Sashank J. Reddi, Satyen Kale. 2018.
On the convergence of Adam and beyond. ICLR.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proc. of CoNLL UD Shared Task, pages
88–99, Vancouver, Canada.

Ivan Titov, James Henderson, Paola Merlo, and
Gabriele Musillo. 2009. Online graph planarisation
for synchronous parsing of semantic and syntactic
dependencies. In Twenty-First International Joint
Conference on Artificial Intelligence.

Alper Tokgöz and Gülsen Eryiğit. 2015. Transition-
based dependency DAG parsing using dynamic ora-
cles. In Proc. of ACL Student Research Workshop,
pages 22–27.

Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng Ji,
and Nianwen Xue. 2016. CAMR at SemEval-2016
task 8: An extended transition-based AMR parser.
In Proc. of SemEval, pages 1173–1178.

Chuan Wang and Nianwen Xue. 2017. Getting the
most out of AMR parsing. In Proc. of EMNLP,
pages 1257–1268.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015a. Boosting transition-based AMR parsing
with refined actions and auxiliary analyzers. In
Proc. of ACL, pages 857–862.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015b. A transition-based algorithm for AMR pars-
ing. In Proc. of NAACL, pages 366–375.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s

neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proc. of CoNLL UD Shared Task, pages
1–21.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luoto-
lahti, Sampo Pyysalo, Slav Petrov, Martin Pot-
thast, Francis Tyers, Elena Badmaeva, Memduh
Gökırmak, Anna Nedoluzhko, Silvie Cinková, Jan
Hajič jr., Jaroslava Hlaváčová, Václava Kettnerová,
Zdeňka Urešová, Jenna Kanerva, Stina Ojala, Anna
Missilä, Christopher Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
de Paiva, Kira Droganova, Héctor Martínez Alonso,
Çağrı Çöltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran
Yu, Emily Pitler, Saran Lertpradit, Michael Mandl,
Jesse Kirchner, Hector Fernandez Alcalde, Jana Str-
nadova, Esha Banerjee, Ruli Manurung, Antonio
Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo
Mendonça, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. 2017. CoNLL 2017 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–19, Vancouver, Canada.
Association for Computational Linguistics.

Yue Zhang, Wei Jiang, Qingrong Xia, Junjie Cao, Rui
Wang, Zhenghua Li, and Min Zhang. 2019. Suda–
alibaba at MRP 2019: Graph-based models with
BERT. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 149 – 157, Hong Kong, China.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proc. of ACL, pages
434–443.

http://aclweb.org/anthology/D14-1048
http://aclweb.org/anthology/D14-1048
http://aclweb.org/anthology/C08-1095
http://aclweb.org/anthology/C08-1095
https://openreview.net/forum?id=ryQu7f-RZ
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://aclweb.org/anthology/P15-3004
http://aclweb.org/anthology/P15-3004
http://aclweb.org/anthology/P15-3004
http://aclweb.org/anthology/S16-1181
http://aclweb.org/anthology/S16-1181
http://www.aclweb.org/anthology/D17-1129
http://www.aclweb.org/anthology/D17-1129
http://aclweb.org/anthology/P15-2141
http://aclweb.org/anthology/P15-2141
http://aclweb.org/anthology/N15-1040
http://aclweb.org/anthology/N15-1040
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001
http://aclweb.org/anthology/P13-1043
http://aclweb.org/anthology/P13-1043

