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10,000-Meter Perspective: Parsing into Semantic Graphs

A similar technique is almost impossible to apply to other crops.
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10,000-Meter Perspective: Parsing into Semantic Graphs
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Why Graph-Based Meaning Representation?
I saw Joe’s dog, which was running in the garden.

The dog was chasing a cat.
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Joe’s dog was chasing a cat in the garden.

surface realisation

Hardy & Vlachos (2018): 2+ ROUGE points over strong encoder–decoder.
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Syntactic Trees vs. Semantic Graphs

A similar technique is almost impossible to apply to other crops .

root
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prd
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p

A similar technique almost impossible apply other crops

top
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∃x : technique’(x) ∧ similar’(x); ∃y : crop’(y) ∧ other’(y)
→ almost’(¬possible’(apply’(e, x, y)))

Different Desiderata and Levels of Abstraction
I Grammaticality (e.g. subject–verb agreement) vs. relational structure.
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Semi-Formally: Trees vs. Graphs

Structural Wellformedness Conditions on Trees
I Unique root, connected, single parent, free of cycles; maybe projective;

→ all nodes (but the root) reachable by unique directed path from root.

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1

BV

ARG1 ARG1

Beyond Trees: General Graphs
I Argument sharing: nodes with multiple incoming edges (in-degree > 1);
I some surface tokens do not contribute (as nodes; many function words);
I (structurally) multi-rooted: more than one node with zero in-degree;

→ massive growth in modeling and algorithmic complexity (NP-complete).
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High-Level Goals of the Shared Task

Cross-Framework Comparability and Interoperability
I Vast, complex landscape of representing natural language meaning;

I diverse linguistic traditions, modeling assumptions, levels of ambition;

→ clarify concepts and terminology; unify representations and evaluation.

Parsing into Graph-Structured Representations
I Cottage industry of parsers with output structures beyond rooted trees;

I distinct techniques, e.g. based on transitions, composition, ‘translation’;

→ evaluate across frameworks; learning from complementary knowledge.

Two Distinct Tracks in MRP 2020
I Cross-Framework Perspective: Seek commonality and complementarity.

I Cross-Lingual Perspective: In-framework transfer to another language.
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Graph Structure vs. Node (or Edge) Decorations

Zero-Arity Predicates vs. Constants
I Nodes and edges can be labeled (e.g. by relation and role identifiers);

I labels can be internally structured: node properties and edge attributes;
I properties (and attributes) are non-recursive attribute–value matrices;
I node (and edge) label is merely a distinguished property (or attribute);
I distinction is not commonly discussed, but used by many frameworks.

person

name
OP1 Pierre
OP2 Vinken

temporal-quantity
QUANT 61

year

name age

unit

person

name temporal-quantity

Pierre Vinken 61 year

name age

OP1 OP2 QUANT unit

Pierre Vinken is 61 years old.
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Anchoring in the Surface String

Relating Pieces of Meaning to the Linguistic Signal
I Intuitively, sub-structures of meaning relate to sub-parts of the input;
I semantic frameworks vary in how much weight to put on this relation;

I anchoring of graph elements in sub-strings of the underlying utterance;
I can be part of semantic annotations or not; can take different forms;
I hierarchy of anchoring types: Flavor (0)–(2); bilexical graphs strictest;
I anchoring central in parsing, explicit or latent; aka ‘alignment’ for AMR;
I relevant to at least some downstream tasks; should impact evaluation.

Name Example Type of Anchoring

(0) bilexical (((((hhhhhDM, PSD nodes are sub-set of surface tokens
(1) anchored EDS, PTG, UCCA free node–sub-string correspondences
(2) unanchored AMR, DRG no explicit sub-string correspondences

8
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A Selection of Semantic Graphbanks

Selection Criteria
I ‘Full-sentence’ semantics: all content-bearing units receive annotations;

I natively graph-based: meaning representation through (directed) graphs;

I large-scale, gold-standard annotations and parsers are publicly available;

→ five distinct frameworks, bi-lexical to unanchored; sadly, English only;

→ new in MRP 2020: one additional language for four of the frameworks.

(With Apologies to) Non-Graph or Non-Meaning Banks
I PropBank (Palmer et al., 2005), Framenet (Baker et al., 1998), . . . ;

I Universal Decompositional Semantics (White et al., 2016);

I Enhanced Universal Dependencies (Schuster & Manning, 2016);

I . . .
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(1) Elementary Dependency Structures (EDS)

Simplification of Underspecified Logical Forms (Oepen & Lønning, 2006)
I Converted from LinGO Redwoods Treebank (Flickinger et al., 2017);
I decomposition or construction meaning; anchors: arbitrary sub-strings.

_almost_a_1
〈23:29〉

_impossible_a_for
〈30:40〉

ARG1

_a_q
〈0:1〉

_technique_n_1
〈10:19〉

BV

_similar_a_to
〈2:9〉

ARG1

comp
〈2:9〉

ARG1

_apply_v_to
〈44:49〉

ARG1

ARG2

_crop_n_1
〈59:65〉

ARG3

udef_q
〈53:100〉

BV

_other_a_1
〈53:58〉

ARG1
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(1) Prague Tectogrammatical Graphs (PTG)

Simplification of FGD Tectogrammatical ‘Trees’ (Zeman & Hajič, 2020)
I Prague (Czech–English) Dependency Treebanks (Hajič et al., 2012);
I unanchored nodes for unexpressed arguments, e.g. #Benef and #Gen.

be
〈20:22〉

PRED

apply
〈41:43〉 〈44:49〉

ACT

possible
〈30:40〉

PAT

similar
〈2:9〉

technique
〈0:1〉 〈10:19〉

RSTR

PAT

#Gen

ACT
crop

〈50:52〉 〈59:64〉

ADDR

almost
〈23:29〉

EXT

#Benef

BEN

coref.gram

other
〈53:58〉

RSTR
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(1) Universal Conceptual Cognitive Annotation (UCCA)

Multi-Layered Design (Abend & Rappoport, 2013); Foundational Layer
I Tree backbone: semantic ‘constituents’ are scenes (‘clauses’) and units;

I scenes (Process or State): pArticipants and aDverbials (plus F and U);
I complex units distinguish Center and Elaborator(s); allow remote edges.
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E C

〈41:43〉 〈44:49〉

〈50:52〉 〈53:58〉 〈59:65〉

R E C

A F D F P A

〈65:66〉

U

A similar technique is almost impossible to apply to other crops.
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(2) Abstract Meaning Representation (AMR)

possible-01
polarity -

almost

mod (domain)

apply-02

ARG1

technique

ARG1

crop

ARG2

resemble-01

(ARG1)-of

other

mod (domain)

Banarescu et al. (2013)

I Abstractly (if not linguistically)
similar to EDS, but unanchored;

I verbal senses from PropBank++;

I negation as node-local property;

I tree-like annotation: inversed
edges normalized for evaluation;

I originally designed for (S)MT;
various NLU applications to date.

A similar technique is almost impossible to apply to other crops.

13



(2) Discourse Representation Graphs (DRG)

Graph Encoding of DRS ‘Nested Boxes’ (Kamp & Reyle, 1993)
I From Groningen Parallel Meaning Bank (Abzianidze et al., 2017);
I explicit encoding of scope (boxes and in edges), using reified roles.

 

impossible.a.01
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Attribute
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crop.n.01
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Theme Goal

NEQ

crop.n.01

 

PRESUPPOSITION
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Cross-Framework Training and Evaluation Data

EDS PTG UCCA AMR DRG

Flavor 1 1 1 2 2

tr
ai

n Text Type newspaper newspaper mixed mixed mixed
Sentences 37,192 42,024 6,872 57,885 6,606

Tokens 861,831 1,026,033 171,838 1,049,083 44,692

va
lid

at
e Text Type mixed mixed mixed mixed mixed

Sentences 3,302 1,664 1,585 3,560 885
Tokens 65,564 40,770 25,982 61,722 5,541

te
st

Text Type mixed newspaper mixed mixed mixed
Sentences 4,040 2,507 600 2,457 898

Tokens 68,280 59,191 18,633 49,760 5,991

I Validation split is MRP 2019 evaluation data; allowed for fine-tuning;
I linguistics: smallish WSJ sample in all frameworks publicly available;
I evaluation: subset of 100 sentences from The Little Prince is public.
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Cross-Lingual Training and Evaluation Data

PTG UCCA AMR DRG

Language Czech German Chinese German
Flavor 1 1 1 2

tr
ai

n

Text Type newspaper mixed mixed mixed
Sentences 43,955 4,125 18,365 1,575

Tokens 740,466 95,634 428,054 9,088

te
st

Text Type newspaper mixed mixed mixed
Sentences 5,476 444 1,713 403

Tokens 92,643 10,585 39,228 2,384

I Gold-standard graphs for one additional language in four frameworks;
I ‘low-resource’ training setting for two frameworks: UCCA and DRG;

? explor opportunities for cross-lingual transfer learning (in-framework).
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Cross-Framework Evaluation: MRP Graph Similarity
I Break down graphs into types of information: per-type and overall F1;

I

I requires node–node correspondences; search for overall maximum score;
I maximum common edge subgraph isomorphism (MCES) is NP-hard;

→ smart initialization, scheduling, and pruning yield strong approximation.

_retire_v_1
〈7:14〉

named
CARG Pierre

〈0:6〉

ARG1

proper_q
〈0:6〉

BV

Pierre retired.

Different Types of Semantic Graph ‘Atoms’

EDS PTG UCCA AMR DRG

Top Nodes 3 3 3 3 3

Labeled Edges 3 3 3 3 (3)
Node Labels 3 3 7 3 3

Node Properties 3 3 7 3 7

Node Anchoring 3 (3) (3) 7 7

Edge Attributes 7 3 3 7 7
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I Break down graphs into types of information: per-type and overall F1;
I tops and (labeled) edges; labels, properties, anchors,
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Graphbank Statistics (Kuhlmann & Oepen, 2016)

EDS PTG UCCA AMR−1 DRG

(02) Average Tokens per Graph 22.17 24.42 25.01 18.12 6.77
(03) Average Nodes per Token 1.26 0.74 1.33 0.64 2.09
(04) Distinct Edge Labels 10 72 15 101 16

pr
op

or
tio

ns

(05) Percentage of top nodes 0.99 1.27 1.66 3.77 3.40
(06) Percentage of node labels 29.02 21.61 – 43.91 39.81
(07) Percentage of node properties 12.54 26.22 – 7.63 –
(08) Percentage of node anchors 29.02 19.63 38.80 – –
(09) Percentage of (labeled) edges 28.43 26.10 56.88 44.69 56.79
(10) Percentage of edge attributes – 5.17 2.66 – –

tr
ee

ne
ss

(11) %g Rooted Trees 0.09 22.63 28.19 22.05 0.35
(12) %g Treewidth One 68.60 22.67 34.17 49.91 0.35
(13) Average Treewidth 1.317 2.067 1.691 1.561 2.131
(14) Maximal Treewidth 3 7 4 5 5
(15) Average Edge Density 1.015 1.177 1.055 1.092 1.265
(16) %n Reentrant 32.77 16.23 4.90 19.89 25.92
(17) %g Cyclic 0.27 33.97 0.00 0.38 0.27
(18) %g Not Connected 1.90 0.00 0.00 0.00 0.00
(19) %g Multi-Rooted 99.93 0.00 0.00 71.64 32.32
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High-Level Overview of Submissions
�Cross-Framework mCross-Lingual

Teams AMR DRG EDS PTG UCCA

Hitachi �m �m �m � �m �m
ÚFAL �m �m �m � �m �m
HIT-SCIR �m �m �m � �m �m
HUJI-KU �m �m � �m �m
ISCAS � � � � �
TJU-BLCU �m �m � �m �

JBNU �
ÚFAL �m �m � �m �m

ERG �
19



Score Distribution

Overall AMR DRG EDS PTG UCCA
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Score Distribution: Zoom In

Overall AMR DRG EDS PTG UCCA
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�Cross-Framework Track: Full Evaluation

Overall AMR DRG EDS PTG UCCA
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Medal Ceremony!
�Cross-Framework mCross-Lingual

Teams AMR DRG EDS PTG UCCA
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ISCAS � � � � �
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Cross-Framework Track: The Little Prince
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State of the Art: The Little Prince
MRP 2019:

AMR DM EDS PSD UCCA
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MRP 2020:
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Interim Conclusions & Outlook

Lessons Learned (from Two Consecutive Shared Tasks)
I Good community interest: 180 subscribers; 19 data licenses (via LDC);

I technical barriers and ‘competitive selection’: 6 + 2 teams submitted;

→ advanced state of the art on four frameworks (but possibly not AMR);

→ greatly increased cross-framework uniformity; but limited (M)TL so far.

Outlook: Beyond MRP 2020
I High-quality, robust meaning representation parsers generally available;

I MRP 2020 data, metrics, submissions, and scores as stable benchmark;

? post-mortem contrastive analysis of architectures (Buljan et al., 2020);

? increased focus on evaluation metrics: score ‘larger pieces’; SEMBLEU;

→ open discussion with 2020 participants towards the end of this session.
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